Generalized Linear Models

Generalized linear models implemented in Java

License

License

MIT
Categories

Categories

Java Languages
GroupId

GroupId

com.github.chen0040
ArtifactId

ArtifactId

java-glm
Last Version

Last Version

1.0.6
Release Date

Release Date

Type

Type

jar
Description

Description

Generalized Linear Models
Generalized linear models implemented in Java
Project URL

Project URL

https://github.com/chen0040/java-glm
Source Code Management

Source Code Management

https://github.com/chen0040/java-glm

Download java-glm

How to add to project

<!-- https://jarcasting.com/artifacts/com.github.chen0040/java-glm/ -->
<dependency>
    <groupId>com.github.chen0040</groupId>
    <artifactId>java-glm</artifactId>
    <version>1.0.6</version>
</dependency>
// https://jarcasting.com/artifacts/com.github.chen0040/java-glm/
implementation 'com.github.chen0040:java-glm:1.0.6'
// https://jarcasting.com/artifacts/com.github.chen0040/java-glm/
implementation ("com.github.chen0040:java-glm:1.0.6")
'com.github.chen0040:java-glm:jar:1.0.6'
<dependency org="com.github.chen0040" name="java-glm" rev="1.0.6">
  <artifact name="java-glm" type="jar" />
</dependency>
@Grapes(
@Grab(group='com.github.chen0040', module='java-glm', version='1.0.6')
)
libraryDependencies += "com.github.chen0040" % "java-glm" % "1.0.6"
[com.github.chen0040/java-glm "1.0.6"]

Dependencies

compile (5)

Group / Artifact Type Version
org.slf4j : slf4j-api jar 1.7.20
org.slf4j : slf4j-log4j12 jar 1.7.20
com.github.chen0040 : java-data-frame jar 1.0.9
gov.nist.math : jama jar 1.0.3
com.github.chen0040 : java-local-search jar 1.0.1

provided (1)

Group / Artifact Type Version
org.projectlombok : lombok jar 1.16.6

test (10)

Group / Artifact Type Version
org.testng : testng jar 6.9.10
org.hamcrest : hamcrest-core jar 1.3
org.hamcrest : hamcrest-library jar 1.3
org.assertj : assertj-core jar 3.5.2
org.powermock : powermock-core jar 1.6.5
org.powermock : powermock-api-mockito jar 1.6.5
org.powermock : powermock-module-junit4 jar 1.6.5
org.powermock : powermock-module-testng jar 1.6.5
org.mockito : mockito-core jar 2.0.2-beta
org.mockito : mockito-all jar 2.0.2-beta

Project Modules

There are no modules declared in this project.

Generalized Linear Model implementation in Java

Package implements the generalized linear model in Java

Build Status Coverage Status

GLM

Install

Add the following to dependencies of your pom file:

<dependency>
  <groupId>com.github.chen0040</groupId>
  <artifactId>java-glm</artifactId>
  <version>1.0.6</version>
</dependency>

Features

The current implementation of GLM supports as many distribution families as glm package in R:

  • Normal
  • Exponential
  • Gamma
  • InverseGaussian
  • Poisson
  • Bernouli
  • Binomial
  • Categorical
  • Multinomial

For the solvers, the current implementation of GLM supports a number of variants of the iteratively re-weighted least squares estimation algorithm:

  • IRLS
  • IRLS with QR factorization
  • IRLS with SVD factorization

Usage

Step 1: Create and train the glm against the training data in step 1

Suppose you want to create logistic regression model from GLM and train the logistic regression model against the data frame

import com.github.chen0040.glm.solvers.Glm;
import com.github.chen0040.glm.enums.GlmSolverType;

trainingData = loadTrainingData();

Glm glm = Glm.logistic();
glm.setSolverType(GlmSolverType.GlmIrls);
glm.fit(trainingData);

The "trainingData" is a data frame (Please refers to this link on how to create a data frame from file or from scratch)

The line "Glm.logistic()" create the logistic regression model, which can be easily changed to create other regression models (For example, calling "Glm.linear()" create a linear regression model)

The line "glm.fit(..)" performs the GLM training.

Step 2: Use the trained regression model to predict on new data

The trained glm can then run on the testing data, below is a java code example for logistic regression:

testingData = loadTestingData();
for(int i = 0; i < testingData.rowCount(); ++i){
    boolean predicted = glm.transform(testingData.row(i)) > 0.5;
    boolean actual = frame.row(i).target() > 0.5;
    System.out.println("predicted(Irls): " + predicted + "\texpected: " + actual);
}

The "testingData" is a data frame

The line "glm.transform(..)" perform the regression

Sample code

Sample code for linear regression

The sample code below shows the linear regression example

DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
      .newInput("x1")
      .newInput("x2")
      .newOutput("y")
      .end();

// y = 4 + 0.5 * x1 + 0.2 * x2
Sampler.DataSampleBuilder sampler = new Sampler()
      .forColumn("x1").generate((name, index) -> randn() * 0.3 + index)
      .forColumn("x2").generate((name, index) -> randn() * 0.3 + index * index)
      .forColumn("y").generate((name, index) -> 4 + 0.5 * index + 0.2 * index * index + randn() * 0.3)
      .end();

DataFrame trainingData = schema.build();

trainingData = sampler.sample(trainingData, 200);

System.out.println(trainingData.head(10));

DataFrame crossValidationData = schema.build();

crossValidationData = sampler.sample(crossValidationData, 40);

Glm glm = Glm.linear();
glm.setSolverType(GlmSolverType.GlmIrlsQr);
glm.fit(trainingData);

for(int i = 0; i < crossValidationData.rowCount(); ++i){
 double predicted = glm.transform(crossValidationData.row(i));
 double actual = crossValidationData.row(i).target();
 System.out.println("predicted: " + predicted + "\texpected: " + actual);
}

System.out.println("Coefficients: " + glm.getCoefficients());

Sample code for logistic regression

The sample code below performs binary classification using logistic regression:

InputStream inputStream = new FileInputStream("heart_scale.txt");
DataFrame dataFrame = DataQuery.libsvm().from(inputStream).build();

for(int i=0; i < dataFrame.rowCount(); ++i){
 DataRow row = dataFrame.row(i);
 String targetColumn = row.getTargetColumnNames().get(0);
 row.setTargetCell(targetColumn, row.getTargetCell(targetColumn) == -1 ? 0 : 1); // change output from (-1, +1) to (0, 1)
}

TupleTwo<DataFrame, DataFrame> miniFrames = dataFrame.shuffle().split(0.9);
DataFrame trainingData = miniFrames._1();
DataFrame crossValidationData = miniFrames._2();

Glm algorithm = Glm.logistic();
algorithm.setSolverType(GlmSolverType.GlmIrlsQr);
algorithm.fit(trainingData);

double threshold = 1.0;
for(int i = 0; i < trainingData.rowCount(); ++i){
 double prob = algorithm.transform(trainingData.row(i));
 if(trainingData.row(i).target() == 1 && prob < threshold){
    threshold = prob;
 }
}
logger.info("threshold: {}",threshold);


BinaryClassifierEvaluator evaluator = new BinaryClassifierEvaluator();

for(int i = 0; i < crossValidationData.rowCount(); ++i){
 double prob = algorithm.transform(crossValidationData.row(i));
 boolean predicted = prob > 0.5;
 boolean actual = crossValidationData.row(i).target() > 0.5;
 evaluator.evaluate(actual, predicted);
 System.out.println("probability of positive: " + prob);
 System.out.println("predicted: " + predicted + "\tactual: " + actual);
}

evaluator.report();

Sample code for multi-class classification

The sample code below perform multi class classification using the logistic regression model as the generator

InputStream irisStream = FileUtils.getResource("iris.data");
DataFrame irisData = DataQuery.csv(",")
      .from(irisStream)
      .selectColumn(0).asNumeric().asInput("Sepal Length")
      .selectColumn(1).asNumeric().asInput("Sepal Width")
      .selectColumn(2).asNumeric().asInput("Petal Length")
      .selectColumn(3).asNumeric().asInput("Petal Width")
      .selectColumn(4).asCategory().asOutput("Iris Type")
      .build();

TupleTwo<DataFrame, DataFrame> parts = irisData.shuffle().split(0.9);

DataFrame trainingData = parts._1();
DataFrame crossValidationData = parts._2();

System.out.println(crossValidationData.head(10));

OneVsOneGlmClassifier multiClassClassifier = Glm.oneVsOne(Glm::logistic);
multiClassClassifier.fit(trainingData);

ClassifierEvaluator evaluator = new ClassifierEvaluator();

for(int i=0; i < crossValidationData.rowCount(); ++i) {
 String predicted = multiClassClassifier.classify(crossValidationData.row(i));
 String actual = crossValidationData.row(i).categoricalTarget();
 System.out.println("predicted: " + predicted + "\tactual: " + actual);
 evaluator.evaluate(actual, predicted);
}

evaluator.report();

Background on GLM

Introduction

GLM is generalized linear model for exponential family of distribution model b = g(a). g(a) is the inverse link function.

Therefore, for a regressions characterized by inverse link function g(a), the regressions problem be formulated as we are looking for model coefficient set x in

g(A * x) = b + e

And the objective is to find x such for the following objective:

min (g(A * x) - b).transpose * W * (g(A * x) - b)

Suppose we assumes that e consist of uncorrelated naive variables with identical variance, then W = sigma^(-2) * I, and The objective

min (g(A * x) - b) * W * (g(A * x) - b).transpose

is reduced to the OLS form:

min || g(A * x) - b ||^2

Iteratively Re-weighted Least Squares estimation (IRLS)

In regressions, we tried to find a set of model coefficient such for:

A * x = b + e

A * x is known as the model matrix, b as the response vector, e is the error terms.

In OLS (Ordinary Least Square), we assumes that the variance-covariance

matrix V(e) = sigma^2 * W

, where: W is a symmetric positive definite matrix, and is a diagonal matrix sigma is the standard error of e

In OLS (Ordinary Least Square), the objective is to find x_bar such that e.transpose * W * e is minimized (Note that since W is positive definite, e * W * e is alway positive) In other words, we are looking for x_bar such as (A * x_bar - b).transpose * W * (A * x_bar - b) is minimized

Let

y = (A * x - b).transpose * W * (A * x - b)

Now differentiating y with respect to x, we have

dy / dx = A.transpose * W * (A * x - b) * 2

To find min y, set dy / dx = 0 at x = x_bar, we have

A.transpose * W * (A * x_bar - b) = 0

Transform this, we have

A.transpose * W * A * x_bar = A.transpose * W * b

Multiply both side by (A.transpose * W * A).inverse, we have

x_bar = (A.transpose * W * A).inverse * A.transpose * W * b

This is commonly solved using IRLS

The implementation of Glm based on iteratively re-weighted least squares estimation (IRLS)

Versions

Version
1.0.6
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1