java-outliers
Package provide java implementation of outlier detection using normal distribution for multi-variate datasets
Install
Add the following dependency to your POM file:
<dependency>
<groupId>com.github.chen0040</groupId>
<artifactId>java-outliers</artifactId>
<version>1.0.1</version>
</dependency>
Usage
The anomaly detection algorithms takes data that is prepared and stored in a data frame (Please refers to this link on how to create a data frame from file or from scratch)
The MultiVariateNormalOutliers can be trained using unsupervised learning.
To create and train the MultiVariateNormalOutliers, run the following code:
MultiVariateNormalOutliers method = new MultiVariateNormalOutliers();
method.fit(trainingData);
To test the trained method on new data, run:
boolean outlier = method.isAnomaly(dataRow);
Complete sample code for LOF
The problem that we will be using as demo as the following anomaly detection problem:
Below is the sample code which illustrates how to use MultiVariateNormalOutliers to detect outliers in the above problem:
DataQuery.DataFrameQueryBuilder schema = DataQuery.blank()
.newInput("c1")
.newInput("c2")
.newOutput("anomaly")
.end();
Sampler.DataSampleBuilder negativeSampler = new Sampler()
.forColumn("c1").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? -2 : 2))
.forColumn("c2").generate((name, index) -> randn() * 0.3 + (index % 2 == 0 ? -2 : 2))
.forColumn("anomaly").generate((name, index) -> 0.0)
.end();
Sampler.DataSampleBuilder positiveSampler = new Sampler()
.forColumn("c1").generate((name, index) -> rand(-4, 4))
.forColumn("c2").generate((name, index) -> rand(-4, 4))
.forColumn("anomaly").generate((name, index) -> 1.0)
.end();
DataFrame trainingData = schema.build();
trainingData = negativeSampler.sample(trainingData, 200);
trainingData = positiveSampler.sample(trainingData, 200);
System.out.println(trainingData.head(10));
DataFrame crossValidationData = schema.build();
crossValidationData = negativeSampler.sample(crossValidationData, 40);
crossValidationData = positiveSampler.sample(crossValidationData, 40);
MultiVariateNormalOutliers method = new MultiVariateNormalOutliers();
method.fit(trainingData);
BinaryClassifierEvaluator evaluator = new BinaryClassifierEvaluator();
for(int i = 0; i < crossValidationData.rowCount(); ++i){
boolean predicted = method.isAnomaly(crossValidationData.row(i));
boolean actual = crossValidationData.row(i).target() > 0.5;
evaluator.evaluate(actual, predicted);
logger.info("predicted: {}\texpected: {}", predicted, actual);
}
evaluator.report();