java-swarm-intelligence
Optimization framework based on swarm intelligence
Features
- Bees algorithm (Continuous Optimization)
- Ant Colony Optimization (Combinatorial Optimization)
- Particle Swarm Optimization (Continuous Optimization)
Install
Add the following dependency to your POM file:
<dependency>
<groupId>com.github.chen0040</groupId>
<artifactId>java-swarm-intelligence</artifactId>
<version>1.0.5</version>
</dependency>
Usage
Bees Swarm
The sample code below shows how to use the bees algorithm to solve the Rosenbrock minimization problem:
CostFunction Rosenbrock = new CostFunction() {
public double calc(double x, double y)
{
double expr1 = (x*x - y);
double expr2 = 1 - x;
return 100 * expr1*expr1 + expr2*expr2;
}
@Override public double evaluate(List<Double> solution, List<Double> lowerBounds, List<Double> upperBounds) {
return calc(solution.get(0), solution.get(1));
}
};
BeeSwarm swarm = new BeeSwarm();
swarm.setUpperBounds(Arrays.asList(5.0, 5.0));
swarm.setLowerBounds(Arrays.asList(-5.0, -5.0));
swarm.setDimension(2);
swarm.setCostFunction(Rosenbrock);
swarm.setMaxIterations(50);
Bee bestSolution = swarm.solve();
logger.info("best solution: {} cost: {}", bestSolution, bestSolution.getCost());
List<Double> trend = swarm.getCostTrend();
logger.info("trend: {}", trend);
To visualize the performance of the bees swarm algorithm over time:
CostTrend chart = new CostTrend(trend, "Cost vs Generation");
chart.showIt(true);
Particle Swarm Optimization
The sample code below shows how to use the PSO algorithm to solve the Rosenbrock minimization problem:
CostFunction Rosenbrock = new CostFunction() {
public double calc(double x, double y)
{
double expr1 = (x*x - y);
double expr2 = 1 - x;
return 100 * expr1*expr1 + expr2*expr2;
}
@Override public double evaluate(List<Double> solution, List<Double> lowerBounds, List<Double> upperBounds) {
return calc(solution.get(0), solution.get(1));
}
};
ParticleSwarm swarm = new ParticleSwarm();
swarm.setUpperBounds(Arrays.asList(5.0, 5.0));
swarm.setLowerBounds(Arrays.asList(-5.0, -5.0));
swarm.setDimension(2);
swarm.setCostFunction(Rosenbrock);
swarm.setMaxIterations(50);
Particle bestSolution = swarm.solve();
logger.info("best solution: {} cost: {}", bestSolution, bestSolution.getCost());
List<Double> trend = swarm.getCostTrend();
logger.info("trend: {}", trend);
To visualize the performance of the particle swarm algorithm over time:
CostTrend chart = new CostTrend(trend, "Cost vs Generation");
chart.showIt(true);
Ant System
The sample code below shows how to solve a TSP (Travelling Salesman Problem) instance using Ant System:
// load the bayg29 TSP instance
TspBenchmark benchmark = Tsp.get(Tsp.Instance.bayg29);
PathCostFunction costFunction = new PathCostFunction() {
// compute the cost of the tour constructed by an ant on the problem bayg29
@Override public double evaluate(List<Integer> path) {
double cost = 0;
for(int i=0; i < path.size(); ++i) {
int j = (i+1) % path.size();
double distance = benchmark.distance(path.get(i), path.get(j));
cost += distance;
}
return cost;
}
// heuristic weight for transition from state1 to state2 during path construction
// the higher the weight the more favorable to transit from state1 to state2
@Override public double stateTransitionWeight(int state1, int state2) {
return 1 / (1 + benchmark.distance(state1, state2));
}
};
AntSystem antSystem = new AntSystem();
antSystem.setProblemSize(benchmark.size());
antSystem.setCostFunction(costFunction);
antSystem.setMaxIterations(100);
Ant bestAnt = antSystem.solve();
System.out.println("minimal total distance found by Ant System: " + bestAnt.getCost());
System.out.println("known minimal total distance: " + costFunction.evaluate(benchmark.optTour()));
System.out.println("best TSP path found: ");
for(int i=0; i < bestAnt.getPath().size(); ++i) {
int j = (i + 1) % bestAnt.getPath().size();
System.out.println(bestAnt.getPath().get(i) + " => " + bestAnt.getPath().get(j));
}
To visualize the performance of the ant system algorithm over time:
CostTrend chart = new CostTrend(antSystem.getCostTrend(), "Cost vs Generation");
chart.showIt(true);
Ant Colony System
The sample code below shows how to solve a TSP (Travelling Salesman Problem) instance using Ant Colony System:
TspBenchmark benchmark = Tsp.get(Tsp.Instance.bayg29);
PathCostFunction costFunction = new PathCostFunction() {
@Override public double evaluate(List<Integer> path) {
double cost = 0;
for(int i=0; i < path.size(); ++i) {
int j = (i+1) % path.size();
double distance = benchmark.distance(path.get(i), path.get(j));
cost += distance;
}
return cost;
}
// heuristic weight for transition from state1 to state2 during path construction
// the higher the weight the more favorable to transit from state1 to state2
@Override public double stateTransitionWeight(int state1, int state2) {
return 1 / (1 + benchmark.distance(state1, state2));
}
};
AntColonySystem antColonySystem = new AntColonySystem();
antColonySystem.setProblemSize(benchmark.size());
antColonySystem.setCostFunction(costFunction);
antColonySystem.setMaxIterations(100);
Ant bestAnt = antColonySystem.solve();
System.out.println("minimal total distance found: " + bestAnt.getCost());
System.out.println("best known cost: " + costFunction.evaluate(benchmark.optTour()));
System.out.println("best path found: ");
for(int i=0; i < bestAnt.getPath().size(); ++i) {
int j = (i + 1) % bestAnt.getPath().size();
System.out.println(bestAnt.getPath().get(i) + " => " + bestAnt.getPath().get(j));
}
To visualize the performance of the ant colony system algorithm over time:
CostTrend chart = new CostTrend(antColonySystem.getCostTrend(), "Cost vs Generation");
chart.showIt(true);