CSV

LaukvikCSV is a powerful API for reading, writing and querying tabular data stored in the CSV format. In contrast to other API it lets you specify data types for each column using meta data. It automatically detects delimiters so you don't have to worry about delimiters being comma, tab, pipe, semicolon etc. Run powerful queries to filter your data easily with a fluid query language thats type safe. Export your tabular data to CSV, JSON, XML and HTML.

License

License

Categories

Categories

CSV Data Data Formats
GroupId

GroupId

no.laukvik
ArtifactId

ArtifactId

csv
Last Version

Last Version

0.9.3
Release Date

Release Date

Type

Type

jar
Description

Description

CSV
LaukvikCSV is a powerful API for reading, writing and querying tabular data stored in the CSV format. In contrast to other API it lets you specify data types for each column using meta data. It automatically detects delimiters so you don't have to worry about delimiters being comma, tab, pipe, semicolon etc. Run powerful queries to filter your data easily with a fluid query language thats type safe. Export your tabular data to CSV, JSON, XML and HTML.
Project URL

Project URL

https://github.com/laukvik/CSV
Source Code Management

Source Code Management

https://github.com/laukvik/CSV

Download csv

How to add to project

<!-- https://jarcasting.com/artifacts/no.laukvik/csv/ -->
<dependency>
    <groupId>no.laukvik</groupId>
    <artifactId>csv</artifactId>
    <version>0.9.3</version>
</dependency>
// https://jarcasting.com/artifacts/no.laukvik/csv/
implementation 'no.laukvik:csv:0.9.3'
// https://jarcasting.com/artifacts/no.laukvik/csv/
implementation ("no.laukvik:csv:0.9.3")
'no.laukvik:csv:jar:0.9.3'
<dependency org="no.laukvik" name="csv" rev="0.9.3">
  <artifact name="csv" type="jar" />
</dependency>
@Grapes(
@Grab(group='no.laukvik', module='csv', version='0.9.3')
)
libraryDependencies += "no.laukvik" % "csv" % "0.9.3"
[no.laukvik/csv "0.9.3"]

Dependencies

test (2)

Group / Artifact Type Version
junit : junit jar 4.12
com.googlecode.json-simple : json-simple jar 1.1

Project Modules

There are no modules declared in this project.

LaukvikCSV

Continuous Integration: Build Status
License: Apache 2.0

LaukvikCSV is a powerful API for reading, writing and querying tabular data stored in the CSV format. In contrast to other API it lets you specify data types for each column using meta data. It automatically detects delimiters so you don't have to worry about delimiters being comma, tab, pipe, semicolon etc. Run powerful queries to filter your data easily with a fluid query language thats type safe. Export your tabular data to CSV, JSON, XML and HTML.

Installing

<dependency>
    <groupId>no.laukvik</groupId>
    <artifactId>csv</artifactId>
    <version>0.9.4</version>
</dependency>

Reading a CSV file

The easiest way to read a CSV file is to call the default constructor. This method will try to auto detect separator character and encoding.

CSV csv = new CSV( new File("presidents.csv") );
StringColumn president = csv.getColumn("president");
IntegerColumn presidency = csv.getColumn(5);
List<Row> rows = csv.findRows();
for (Row r : rows){
    System.out.println( r.get(president) );
    System.out.println( r.get(presidency) );
}

Combining multiple CSV files

Use the appendFile method to combine multiple files.

CSV csv = new CSV(new File("presidents.csv"));
csv.appendFile(getResource("another.csv"));

Writing files

Creates a new CSV with two presidents and saves it to addresses.csv

CSV csv = new CSV();
StringColumn first = csv.getStringColumn("first");
StringColumn last = csv.getStringColumn("last");
csv.addRow().set( first, "Barack" ).set( last, "Obama" );
csv.addRow().set( first, "Donald" ).set( last, "Trump" );
csv.writeFile( new File("addresses.csv") ); 

The output of the file addresses.csv will be:

first,last
"Barack","Obama"
"Donald","Trump"

Exporting files

Using the previous example will write to different formats

csv.writeHtml( new File("addresses.html") ); // Write to HTML format
csv.writeJSON( new File("addresses.json") ); // Write to JSON format
csv.writeXML( new File("addresses.xnk") ); // Write to XML format

Querying a CSV file

Example: Displaying all presidents with presidency between 1 and 10

CSV csv = new CSV( new File("presidents.csv") );
StringColumn president = csv.getStringColumn("president");
IntegerColumn presidency = (IntegerColumn) csv.getColumn(5);
Query query = new Query();
query.isBetween(presidency, 1, 10);
List<Row> rows = csv.findRowsByQuery( query );
for (Row r : rows){
    System.out.println( r.get(president) + ": " + r.get(presidency) );
}

Working with columns

Creating a CSV with two columns

CSV csv = new CSV();
csv.addStringColumn("President");
csv.addStringColumn("Party");

Reordering columns. The following example moves the column "Party" from index 1 to index 0

csv.moveColumn(1,0);

Removes the first column (President).

csv.removeColumn(0);

Working with rows

Adding a new row with data

CSV csv = new CSV();
StringColumn president = csv.addStringColumn("President");
StringColumn party = csv.addStringColumn("Party");

csv.addRow()
    .set(president, "Barack Obama")
    .set(party, "Democratic");

Moving a row up or down

csv.moveRow( 1, 2 );

Swapping two rows

csv.swapRows( 1, 2 );

Removing rows

csv.removeRow( 5 );

Removing rows between range

csv.removeRows( 5, 10 );

Finding the index

csv.indexOf( row );

Inserting row at a specific index

CSV csv = new CSV();
StringColumn president = csv.addStringColumn("President");
csv.addRow(0).setString(president, "Barak Obama");

Iterating rows

Iterating all rows

CSV csv = new CSV( new File("presidents.csv") );
for (Row row : csv.findRows()){
    
}

Iterate rows using stream

CSV csv = new CSV( new File("presidents.csv") );
csv.stream();

Using queries

Finds all rows where the presidency is between 1 and 10

Query query = new Query();
query.isBetween( presidency, 1, 10 ); // Find all rows with value 1 to 10
List<Row> rows = csv.findRowsByQuery( query ); // Returns two rows

Finds all rows above and sorts it descending order

Query query = new Query()
    .isBetween( presidency, 1, 10 )
    .descending( presidency );
List<Row> rows = csv.findByQuery(query);

A more complicated example that uses different filters

// Build an empty CSV with a few columns
CSV csv = new CSV();
StringColumn president = csv.addStringColumn("President");
StringColumn party = csv.addStringColumn("Party");
IntegerColumn presidency = csv.addIntegerColumn("Presidency");
UrlColumn web = csv.addUrlColumn("web");
DateColumn tookOffice = csv.addDateColumn("Took office", "dd/MM/yyyy");

// Add test values
csv.addRow()
        .set( president, "Donald Trump")
        .set( presidency, 45)
        .set( party, null)
        .set( tookOffice, tookOffice.parse("20/01/2017") )
        .set( web, new URL("https://en.wikipedia.org/wiki/Donald_Trump"));
csv.addRow()
        .set( president, "Barack Obama")
        .set( presidency, 44)
        .set( party, "Democratic")
        .set( tookOffice, tookOffice.parse("20/01/2009") )
        .set( web, new URL("http://en.wikipedia.org/wiki/Barack_Obama"));
csv.addRow()
        .set( president, "George W. Bush")
        .set( presidency, 43)
        .set( party, "Republican")
        .set( tookOffice, tookOffice.parse("20/01/2001") )
        .set( web, new URL("http://en.wikipedia.org/wiki/George_W._Bush"));
csv.addRow()
        .set( president, "Bill Clinton")
        .set( presidency, 42)
        .set( party, "Democratic")
        .set( tookOffice, tookOffice.parse("20/01/1993") )
        .set( web, new URL("http://en.wikipedia.org/wiki/Bill_Clinton"));
csv.addRow()
        .set( president, "George H. W. Bush")
        .set( presidency, 41)
        .set( party, "Republican")
        .set( tookOffice, tookOffice.parse("20/01/1989") )
        .set( web, new URL("http://en.wikipedia.org/wiki/George_H._W._Bush"));
csv.addRow()
        .set( president, "Ronald Reagan")
        .set( presidency, 40)
        .set( party, "Republican")
        .set( tookOffice, tookOffice.parse("20/01/1981") )
        .set( web, new URL("http://en.wikipedia.org/wiki/Ronald_Reagan"));

// Build the query
Query query = new Query()
        .isBetween( presidency, 41, 45 )
        .isDayOfMonth( tookOffice, 20)
        .isWordCount( president, 2, 3, 4)
        .isAfter( tookOffice, tookOffice.parse("01/01/1999") )
        .isYear( tookOffice, 2009, 2017 )
        .isEmpty(party)
        .isNotEmpty(web)
        .ascending( presidency );
List<Row> rows = csv.findRowsByQuery(query);

// Display the results
for (Row r : rows){
    System.out.println( r.get(presidency) + ": " + r.get(president) );
}

Frequency Distribution

Builds a frequency distribution for the president column

CSV csv = new CSV();
StringColumn president = csv.addStringColumn("president");
csv.addRow().set(president, "Barack Obama");
csv.addRow().set(president, "Barack Obama");
csv.addRow().set(president, "Donald Trump");
csv.addRow(); // Add row with no president
csv.addRow().set(president, null); // Add row with president is null
FrequencyDistribution<String> freq = csv.buildFrequencyDistribution(president);
for (String key : freq.getKeys()){
     System.out.println(key + ": " + freq.getCount(key));
}
System.out.println("Nulls: " + freq.getNullCount());

The example about will output

Barack Obama: 2
Donald Trump: 1
Nulls: 2

Distinct Values

Reusing the previous example will create a set of distinct values like this

Set<String> values = csv.buildDistinctValues( president );

The example about will output

Barack Obama
Donald Trump

Versions

Version
0.9.3
0.9.2