js-combinatorics

WebJar for js-combinatorics

License

License

MIT
Categories

Categories

JavaScript Languages
GroupId

GroupId

org.webjars.npm
ArtifactId

ArtifactId

js-combinatorics
Last Version

Last Version

0.5.3
Release Date

Release Date

Type

Type

jar
Description

Description

js-combinatorics
WebJar for js-combinatorics
Project URL

Project URL

http://webjars.org
Source Code Management

Source Code Management

https://github.com/dankogai/js-combinatorics

Download js-combinatorics

How to add to project

<!-- https://jarcasting.com/artifacts/org.webjars.npm/js-combinatorics/ -->
<dependency>
    <groupId>org.webjars.npm</groupId>
    <artifactId>js-combinatorics</artifactId>
    <version>0.5.3</version>
</dependency>
// https://jarcasting.com/artifacts/org.webjars.npm/js-combinatorics/
implementation 'org.webjars.npm:js-combinatorics:0.5.3'
// https://jarcasting.com/artifacts/org.webjars.npm/js-combinatorics/
implementation ("org.webjars.npm:js-combinatorics:0.5.3")
'org.webjars.npm:js-combinatorics:jar:0.5.3'
<dependency org="org.webjars.npm" name="js-combinatorics" rev="0.5.3">
  <artifact name="js-combinatorics" type="jar" />
</dependency>
@Grapes(
@Grab(group='org.webjars.npm', module='js-combinatorics', version='0.5.3')
)
libraryDependencies += "org.webjars.npm" % "js-combinatorics" % "0.5.3"
[org.webjars.npm/js-combinatorics "0.5.3"]

Dependencies

There are no dependencies for this project. It is a standalone project that does not depend on any other jars.

Project Modules

There are no modules declared in this project.

ES2015 MIT LiCENSE build status

js-combinatorics

Simple combinatorics in JavaScript

HEADS UP

js-combinatorics has gone ES2015 since version 1.

  • native iterator instead of custom
  • module. import instead of require.
  • BigInt where possible

And from version 1.2 it is written in TypeScript. combinatorics.js and combinatorics.d.ts are compiled from combinatorics.ts.

APIs will change accordingly. Old versions are available in the version0 branch.

For Swift programmers

Check swift-combinatorics. More naturally implemented with generics and protocol.

SYNOPSIS

import * as $C from './combinatorics.js';
let it =  new $C.Combination('abcdefgh', 4);
for (const elem of it) {
  console.log(elem) // ['a', 'b', 'c', 'd'] ... ['e', 'f', 'g', 'h']
}

Usage

load everything…

import * as Combinatorics from './combinatorics.js';

or just objects you want.

import { Combination, Permutation }  from './combinatorics.js';

You don't even have to install if you import from CDNs.

import * as $C from 'https://cdn.jsdelivr.net/npm/[email protected]/combinatorics.min.js';

Since this is an ES6 module, type="module" is required the <script> tags. of your HTML files. But you can make it globally available as follows.

<script type="module">
  import * as $C from 'combinatorics.js';
  window.Combinatorics = $C;
</script>
<script>
  // now you can access Combinatorics
  let c = new Combinatorics.Combination('abcdefgh', 4);
</script>

commonjs (node.js)

use babel or esm.

  • from RunKit example
require=require("esm")(module);
var Combinatorics=require("js-combinatorics");
  • REPL
% node -r esm
Welcome to Node.js v14.5.0.
Type ".help" for more information.
> import * as $C from './combinatorics.js'
undefined
> $C
[Module] {
  BaseN: [Function: BaseN],
  CartesianProduct: [Function: CartesianProduct],
  Combination: [Function: Combination],
  Permutation: [Function: Permutation],
  PowerSet: [Function: PowerSet],
  combination: [Function: combination],
  factoradic: [Function: factoradic],
  factorial: [Function: factorial],
  permutation: [Function: permutation],
  version: '1.2.2'
}
> [...new $C.Permutation('abcd')]
[
  [ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
  [ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
  [ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
  [ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
  [ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
  [ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
  [ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
  [ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
  [ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
  [ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
  [ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
  [ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
]
> 

./combinatorics.js is an ECMAScript module but if you still need a UMD or commonjs version, they are available as ./umd/combinatorics.js and ./commonjs/combinatorics.js respectively.

Description

Arithmetic Functions

Self-explanatory, are they not?

import { permutation, combination, factorial, randomInteger } from './combinatorics.js';

permutation(24, 12);  // 1295295050649600
permutation(26, 13);  // 64764752532480000n

combination(56, 28);  // 7648690600760440
combination(58, 29);  // 30067266499541040n

factorial(18);  // 6402373705728000
factorial(19);  // 121645100408832000n

randomInteger(6402373705727999);    // random n  [0,6402373705728000)
randomInteger(121645100408832000n); // ramdom n  [0n, 121645100408832000n)

The arithmetic functions above accept both Number and BigInt (if supported). Return answers in Number if it is small enough to fit within Number.MAX_SAFE_INTEGER or BigInt otherwise.

factoradic() and combinadic()

They need a little more explanation.

import { factoradic, combinadic } from './combinatorics.js';

factoradic(6402373705727999);     // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]
factoradic(121645100408831999n);  // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]

const c16_8 = combinadic(16, 8);
c16_8(0);     // [ 0,  1,  2,  3,  4,  5,  6,  7]
c16_8(12870); // [ 8,  9, 10, 11, 12, 13, 14, 15]
const c58_29 = combinadic(58, 29);
c58_29(0); /* [
   0,  1,  2,  3,  4,  5,  6,  7,  8,
   9, 10, 11, 12, 13, 14, 15, 16, 17,
  18, 19, 20, 21, 22, 23, 24, 25, 26,
  27, 28
] */
c58_29(30067266499541039n); /* [
  29, 30, 31, 32, 33, 34, 35, 36, 37,
  38, 39, 40, 41, 42, 43, 44, 45, 46,
  47, 48, 49, 50, 51, 52, 53, 54, 55,
  56, 57
] */

factoradic(n) returns the factoradic representation of n. For an array ary with n elements, you can get its nth permutation by picking ary[i] for each i in the factoradic.

Unlike other arithmetic functions, combinadic() returns a function which returns mth combinadic digit of n C k. For an array ary with n elements, you can get its mth combination by picking ary[i] for each i in the combinadic.

classes

The module comes with Permutation, Combination, PowerSet, BaseN, and CartesianProduct. You can individually import them or all of them via import *

import * as $C from 'combinatorics.js';

You construct an iterable object by giving a seed iterable and options. in the example below, 'abcdefgh' is the seed and 4 is the size of the element.

let it = new $C.Combination('abcdefgh', 4);

if you hate new, you can use Klass.of where Klass is one of the classes this module offers.

let it = $C.Combination.of('abcdefgh', 4);

Once constructed, you can iterate via for … of statement or turn it into an array via [...] construct.

[...it]; /* [
  [ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'c', 'e' ], [ 'a', 'b', 'c', 'f' ],
  [ 'a', 'b', 'c', 'g' ], [ 'a', 'b', 'c', 'h' ], [ 'a', 'b', 'd', 'e' ],
  [ 'a', 'b', 'd', 'f' ], [ 'a', 'b', 'd', 'g' ], [ 'a', 'b', 'd', 'h' ],
  [ 'a', 'b', 'e', 'f' ], [ 'a', 'b', 'e', 'g' ], [ 'a', 'b', 'e', 'h' ],
  [ 'a', 'b', 'f', 'g' ], [ 'a', 'b', 'f', 'h' ], [ 'a', 'b', 'g', 'h' ],
  [ 'a', 'c', 'd', 'e' ], [ 'a', 'c', 'd', 'f' ], [ 'a', 'c', 'd', 'g' ],
  [ 'a', 'c', 'd', 'h' ], [ 'a', 'c', 'e', 'f' ], [ 'a', 'c', 'e', 'g' ],
  [ 'a', 'c', 'e', 'h' ], [ 'a', 'c', 'f', 'g' ], [ 'a', 'c', 'f', 'h' ],
  [ 'a', 'c', 'g', 'h' ], [ 'a', 'd', 'e', 'f' ], [ 'a', 'd', 'e', 'g' ],
  [ 'a', 'd', 'e', 'h' ], [ 'a', 'd', 'f', 'g' ], [ 'a', 'd', 'f', 'h' ],
  [ 'a', 'd', 'g', 'h' ], [ 'a', 'e', 'f', 'g' ], [ 'a', 'e', 'f', 'h' ],
  [ 'a', 'e', 'g', 'h' ], [ 'a', 'f', 'g', 'h' ], [ 'b', 'c', 'd', 'e' ],
  [ 'b', 'c', 'd', 'f' ], [ 'b', 'c', 'd', 'g' ], [ 'b', 'c', 'd', 'h' ],
  [ 'b', 'c', 'e', 'f' ], [ 'b', 'c', 'e', 'g' ], [ 'b', 'c', 'e', 'h' ],
  [ 'b', 'c', 'f', 'g' ], [ 'b', 'c', 'f', 'h' ], [ 'b', 'c', 'g', 'h' ],
  [ 'b', 'd', 'e', 'f' ], [ 'b', 'd', 'e', 'g' ], [ 'b', 'd', 'e', 'h' ],
  [ 'b', 'd', 'f', 'g' ], [ 'b', 'd', 'f', 'h' ], [ 'b', 'd', 'g', 'h' ],
  [ 'b', 'e', 'f', 'g' ], [ 'b', 'e', 'f', 'h' ], [ 'b', 'e', 'g', 'h' ],
  [ 'b', 'f', 'g', 'h' ], [ 'c', 'd', 'e', 'f' ], [ 'c', 'd', 'e', 'g' ],
  [ 'c', 'd', 'e', 'h' ], [ 'c', 'd', 'f', 'g' ], [ 'c', 'd', 'f', 'h' ],
  [ 'c', 'd', 'g', 'h' ], [ 'c', 'e', 'f', 'g' ], [ 'c', 'e', 'f', 'h' ],
  [ 'c', 'e', 'g', 'h' ], [ 'c', 'f', 'g', 'h' ], [ 'd', 'e', 'f', 'g' ],
  [ 'd', 'e', 'f', 'h' ], [ 'd', 'e', 'g', 'h' ], [ 'd', 'f', 'g', 'h' ],
  [ 'e', 'f', 'g', 'h' ]
] */

.length

The object has .length so you don't have to iterate to count the elements.

it.length;  // 70

.nth()

And the object has .nth(n) method so you can random-access each element. This is the equivalent of subscript in Array.

it.nth(0);  //  [ 'a', 'b', 'c', 'd' ];
it.nth(69); //  [ 'a', 'd', 'c', 'h' ];

nth() accepts both Number and BigInt.

it.nth(69n);  // [ 'a', 'd', 'c', 'h' ];

nth() also accepts negative indexes. In which case n is (-n)th element from .length.

it.nth(-1);   // [ 'a', 'd', 'c', 'h' ]
it.nth(-70);  // [ 'a', 'b', 'c', 'd' ]

.sample()

And .sample() picks random element, which is defined as .nth(randomInteger(.length)).

it.sample() // one of ['a', 'b', 'c', 'd'] ... ['a', 'd', 'e', 'f']

Beyond Number.MAX_SAFE_INTEGER

Occasionally you need BigInt to access elements beyond Number.MAX_SAFE_INTEGER.

it = new $C.Permutation('abcdefghijklmnopqrstuvwxyz');
it.length;  // 403291461126605635584000000n

You can still access elements before Number.MAX_SAFE_INTEGER in Number.

it.nth(0);  /* [
  'a', 'b', 'c', 'd', 'e', 'f',
  'g', 'h', 'i', 'j', 'k', 'l',
  'm', 'n', 'o', 'p', 'q', 'r',
  's', 't', 'u', 'v', 'w', 'x',
  'y', 'z'
] */
it.nth(9007199254740990); /* [
  'a', 'b', 'c', 'd', 'e', 'f',
  'g', 'i', 'p', 'n', 'r', 'z',
  'm', 'h', 'y', 'x', 'u', 't',
  'l', 'j', 'k', 'q', 's', 'o',
  'v', 'w'
] */

But how are you goint to acccess elements beyond that? Just use BigInt.

it.nth(9007199254740991n);  /* [
  'a', 'b', 'c', 'd', 'e', 'f',
  'g', 'i', 'p', 'n', 'r', 'z',
  'm', 'h', 'y', 'x', 'u', 't',
  'l', 'j', 'k', 'q', 's', 'o',
  'w', 'v'
] */
it.nth(it.length - 1n); /* [
  'z', 'y', 'x', 'w', 'v', 'u',
  't', 's', 'r', 'q', 'p', 'o',
  'n', 'm', 'l', 'k', 'j', 'i',
  'h', 'g', 'f', 'e', 'd', 'c',
  'b', 'a'
] */

You can tell if you need BigInt via .isBig.

new $C.Permutation('0123456789').isBig; // false
new $C.Permutation('abcdefghijklmnopqrstuvwxyz').isBig; // true

You can also check if it is safe on your platform via .isSafe.

// true if BigInt is supported
new $C.Permutation('abcdefghijklmnopqrstuvwxyz').isSafe;

This module still runs on platforms without BigInt (notably Safari 13 or below), but its operation is no longer guaranteed if .isSafe is false.

class Permutation

An iterable which permutes a given iterable.

new Permutation(seed, size)

  • seed: the seed iterable. [...seed] becomes the seed array.
  • size: the number of elements in the iterated element. defaults to seed.length
import {Permutation} from './combinatorics.js';

let it = new Permutation('abcd'); // size 4 is assumed4
it.length;  // 24
[...it];    /* [
  [ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
  [ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
  [ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
  [ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
  [ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
  [ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
  [ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
  [ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
  [ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
  [ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
  [ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
  [ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
] */

it = new Permutation('abcdefghijklmnopqrstuvwxyz0123456789');
it.length;  // 371993326789901217467999448150835200000000n
it.nth(371993326789901217467999448150835199999999n);  /* [
  '9', '8', '7', '6', '5', '4', '3',
  '2', '1', '0', 'z', 'y', 'x', 'w',
  'v', 'u', 't', 's', 'r', 'q', 'p',
  'o', 'n', 'm', 'l', 'k', 'j', 'i',
  'h', 'g', 'f', 'e', 'd', 'c', 'b',
  'a'
] */

Making a permutation of the iterable then taking its sample is functionally the same as Fisher–Yates shuffle of the iterable. Instead of shuffling the deck, it make all possible cases available and let you pick one.

it.sample(); // something between ['a','b', ... '9'] and ['9','8',....'a'] 

It is in fact a little better because .sample() only needs one random number (between 0 and .length - 1) while Fisher–Yates needs n random numbers.

class Combination

An iterable which emits a combination of a given iterable.

new Combination(seed, size)

  • seed: the seed iterable.
  • size: the number of elements in the iterated element.
import {Combination} from './combinatorics.js';

let it = new Combination('abcd', 2);
it.length;  // 6
[...it];    /* [
  [ 'a', 'b' ],
  [ 'a', 'c' ],
  [ 'a', 'd' ],
  [ 'b', 'c' ],
  [ 'b', 'd' ],
  [ 'c', 'd' ]
] */

let a100 = Array(100).fill(0).map((v,i)=>i); // [0, 1, ...99]
it = new Combination(a100, 50);
it.length;  // 100891344545564193334812497256n
it.nth(100891344545564193334812497255n);  /* [
  50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
  61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
  72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
  83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
  94, 95, 96, 97, 98, 99
] */

class PowerSet

An iterable which emits each element of its power set.

new PowerSet(seed)

  • seed: the seed iterable.
import {PowerSet} from './combinatorics.js';

let it = new PowerSet('abc');
it.length;  // 8
[...it];    /* [
  [],
  [ 'a' ],
  [ 'b' ],
  [ 'a', 'b' ],
  [ 'c' ],
  [ 'a', 'c' ],
  [ 'b', 'c' ],
  [ 'a', 'b', 'c' ]
] */

it = new PowerSet(
  'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
);
it.length;  // 18446744073709551616n
it.nth(18446744073709551615n);  /* [
  'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
  'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R',
  'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a',
  'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
  'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
  't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1',
  '2', '3', '4', '5', '6', '7', '8', '9', '+',
  '/'
] */

class BaseN

An iterable which emits all numbers in the given system.

new BaseN(seed, size)

  • seed: the seed iterable whose elements represent digits.
  • size: the number of digits
import {BaseN} from './combinatorics.js';

let it = new BaseN('abc', 3);
it.length;  // 27
[...it];    /* [
  [ 'a', 'a', 'a' ], [ 'b', 'a', 'a' ],
  [ 'c', 'a', 'a' ], [ 'a', 'b', 'a' ],
  [ 'b', 'b', 'a' ], [ 'c', 'b', 'a' ],
  [ 'a', 'c', 'a' ], [ 'b', 'c', 'a' ],
  [ 'c', 'c', 'a' ], [ 'a', 'a', 'b' ],
  [ 'b', 'a', 'b' ], [ 'c', 'a', 'b' ],
  [ 'a', 'b', 'b' ], [ 'b', 'b', 'b' ],
  [ 'c', 'b', 'b' ], [ 'a', 'c', 'b' ],
  [ 'b', 'c', 'b' ], [ 'c', 'c', 'b' ],
  [ 'a', 'a', 'c' ], [ 'b', 'a', 'c' ],
  [ 'c', 'a', 'c' ], [ 'a', 'b', 'c' ],
  [ 'b', 'b', 'c' ], [ 'c', 'b', 'c' ],
  [ 'a', 'c', 'c' ], [ 'b', 'c', 'c' ],
  [ 'c', 'c', 'c' ]
] */

it = BaseN('0123456789abcdef', 16);
it.length;  // 18446744073709551616n
it.nth(18446744073709551615n);  /* [
  'f', 'f', 'f', 'f',
  'f', 'f', 'f', 'f',
  'f', 'f', 'f', 'f',
  'f', 'f', 'f', 'f'
] */

class CartesianProduct

A cartesian product of given sets.

new CartesianProduct(...args)

  • args: iterables that represent sets
import {CartesianProduct} from './combinatorics.js';

let it = new CartesianProduct('012','abc','xyz');
it.length;  // 27
[...it];    /* [
  [ '0', 'a', 'x' ], [ '1', 'a', 'x' ],
  [ '2', 'a', 'x' ], [ '0', 'b', 'x' ],
  [ '1', 'b', 'x' ], [ '2', 'b', 'x' ],
  [ '0', 'c', 'x' ], [ '1', 'c', 'x' ],
  [ '2', 'c', 'x' ], [ '0', 'a', 'y' ],
  [ '1', 'a', 'y' ], [ '2', 'a', 'y' ],
  [ '0', 'b', 'y' ], [ '1', 'b', 'y' ],
  [ '2', 'b', 'y' ], [ '0', 'c', 'y' ],
  [ '1', 'c', 'y' ], [ '2', 'c', 'y' ],
  [ '0', 'a', 'z' ], [ '1', 'a', 'z' ],
  [ '2', 'a', 'z' ], [ '0', 'b', 'z' ],
  [ '1', 'b', 'z' ], [ '2', 'b', 'z' ],
  [ '0', 'c', 'z' ], [ '1', 'c', 'z' ],
  [ '2', 'c', 'z' ]
] */

Since the number of arguments to CartesianProduct is variable, it is sometimes helpful to give a single array with all arguments. But you cannot new ctor.apply(null, args) this case. To mitigate that, you can use .from().

let a16 =  Array(16).fill('0123456789abcdef');
it = CartesianProduct.from(a16);
it.length;  // 18446744073709551616n
it.nth(18446744073709551615n);  /* [
  'f', 'f', 'f', 'f',
  'f', 'f', 'f', 'f',
  'f', 'f', 'f', 'f',
  'f', 'f', 'f', 'f'
] */

What's missing from version 0.x?

  • bigCombination is gone because all classes now can handle big -- combinatorially big! -- cases thanks to BigInt support getting standard. Safari 13 and below is a major exception but BigInt is coming to Safari 14 and up.
  • permutationCombination is gone because the name is misleading and it is now trivially easy to reconstruct as follow:
class permutationCombination {
    constructor(seed) {
        this.seed = [...seed];
    }
    [Symbol.iterator]() {
        return function*(it){
            for (let i = 1, l = it.length; i <= l; i++) {
                yield* new Permutation(it, i);
            }
        }(this.seed);
    }
}
  • js-combinatorics is now natively iterable. Meaning its custom iterators are gone -- with its methods like .map and .filter. JS iterators are very minimalistic with only [...] and for ... of. But don't worry. There are several ways to make those functional methods back again.

For instance, You can use js-xiterable like so:

import {xiterable as $X} from 
  'https://cdn.jsdelivr.net/npm/[email protected]/xiterable.min.js';
import {Permutation} from 'combinatorics.js';
let it = new Permutation('abcd');
let words = $X(it).map(v=>v.join(''))
for (const word of words)) console.log(word)
/*
abcd
abdc
...
dcab
dcba
*/

Versions

Version
0.5.3