Development Tools

Last Version: 1.0.2

Release Date:

beam

de.bright-side.beam : beam

Basic Encryption Algorithm Module - BEAM. BEAM is a light weight Java library to encrypt and decrypt data. Created 2019 by Philip Heyse.

Last Version: 1.0.1

Release Date:

Last Version: 7.71.0.Final

Release Date:

turf-inside

org.webjars.npm : turf-inside

WebJar for turf-inside

Last Version: 3.0.12

Release Date:

Last Version: 1.4.0

Release Date:

ScalaCollider

de.sciss : scalacollider_2.13.0-RC1

A sound synthesis library for the SuperCollider server

Last Version: 1.28.2

Release Date:

document-provider-registry

org.aperteworkflow : document-provider-registry

Aperte Workflow is a compilation of well-known, stable and mature frameworks into a complete BPM solution developed by BlueSoft sp. z o.o. - Polish independent software vendor. Project home page is available at http://www.aperteworkflow.org/

Last Version: 1.1.1

Release Date:

CQ Actions Replication Message

com.cognifide.cq.actions : com.cognifide.cq.actions.msg.replication

Replication-based messages implementation of the CQ Actions

Last Version: 6.4.0

Release Date:

Last Version: 7.3

Release Date:

Last Version: 3.0.2

Release Date:

Authenticate data providers based on different authentication backends provided by the core module

com.microsoft.alm : auth-providers

Convenience utilities that provides authentication data based on different types of authenticators from the core module

Last Version: 0.6.4

Release Date:

lema-provider-socket

com.gitlab.lema-suite : lema-provider-socket

LEMA is an easy to use Log-Server. It supports asynchronous logging of multiple applications (log4j-appender). The logs are processed and save to a database. An RCP-UI supports Live View, History View with advanced filters. You can use it for Error Monitoring / Notification; in order to do this a rule-based labellng (for instance stacktrace grouping) is performed by the server.

Last Version: 0.8.0

Release Date:

pride-core

com.prezi.gradle.pride : pride-core

Pride manages multiple Gradle modules as a single Gradle project

Last Version: 0.9.16

Release Date:

Pushy

com.relayrides : pushy

A Java library for sending push notifications

Last Version: 0.9.3

Release Date:

de4a-canonical-evidences

eu.de4a : de4a-canonical-evidences

Base POM to build the DE4A Commons projects

Last Version: 0.2.7

Release Date:

Maven SCM Subversion Provider - Java Impl.

com.google.code.maven-scm-provider-svnjava : maven-scm-provider-svnjava

This provider use a non ASL license compatible library (svnkit http://svnkit.com/).

Last Version: 2.2.1

Release Date:

pact-jvm-provider_2.12

au.com.dius : pact-jvm-provider_2.12

Pact provider ============= sub project of https://github.com/DiUS/pact-jvm The pact provider is responsible for verifying that an API provider adheres to a number of pacts authored by its clients This library provides the basic tools required to automate the process, and should be usable on its own in many instances. Framework and build tool specific bindings will be provided in separate libraries that build on top of this core functionality. ### Provider State Before each interaction is executed, the provider under test will have the opportunity to enter a state. Generally the state maps to a set of fixture data for mocking out services that the provider is a consumer of (they will have their own pacts) The pact framework will instruct the test server to enter that state by sending: POST "${config.stateChangeUrl.url}/setup" { "state" : "${interaction.stateName}" } ### An example of running provider verification with junit This example uses Groovy, JUnit 4 and Hamcrest matchers to run the provider verification. As the provider service is a DropWizard application, it uses the DropwizardAppRule to startup the service before running any test. **Warning:** It only grabs the first interaction from the pact file with the consumer, where there could be many. (This could possibly be solved with a parameterized test) ```groovy class ReadmeExamplePactJVMProviderJUnitTest { @ClassRule public static TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>( TestDropwizardApplication.class, ResourceHelpers.resourceFilePath("dropwizard/test-config.yaml")) private static ProviderInfo serviceProvider private static Pact<RequestResponseInteraction> testConsumerPact private static ConsumerInfo consumer @BeforeClass static void setupProvider() { serviceProvider = new ProviderInfo("Dropwizard App") serviceProvider.setProtocol("http") serviceProvider.setHost("localhost") serviceProvider.setPort(8080) serviceProvider.setPath("/") consumer = new ConsumerInfo() consumer.setName("test_consumer") consumer.setPactSource(new UrlSource( ReadmeExamplePactJVMProviderJUnitTest.getResource("/pacts/zoo_app-animal_service.json").toString())) testConsumerPact = PactReader.loadPact(consumer.getPactSource()) as Pact<RequestResponseInteraction> } @Test void runConsumerPacts() { // grab the first interaction from the pact with consumer Interaction interaction = testConsumerPact.interactions.get(0) // setup the verifier ProviderVerifier verifier = setupVerifier(interaction, serviceProvider, consumer) // setup any provider state // setup the client and interaction to fire against the provider ProviderClient client = new ProviderClient(serviceProvider, new HttpClientFactory()) Map<String, Object> failures = new HashMap<>() verifier.verifyResponseFromProvider(serviceProvider, interaction, interaction.getDescription(), failures, client) if (!failures.isEmpty()) { verifier.displayFailures(failures) } // Assert all good assertThat(failures, is(empty())) } private ProviderVerifier setupVerifier(Interaction interaction, ProviderInfo provider, ConsumerInfo consumer) { ProviderVerifier verifier = new ProviderVerifier() verifier.initialiseReporters(provider) verifier.reportVerificationForConsumer(consumer, provider) if (!interaction.getProviderStates().isEmpty()) { for (ProviderState providerState: interaction.getProviderStates()) { verifier.reportStateForInteraction(providerState.getName(), provider, consumer, true) } } verifier.reportInteractionDescription(interaction) return verifier } } ``` ### An example of running provider verification with spock This example uses groovy and spock to run the provider verification. Again the provider service is a DropWizard application, and is using the DropwizardAppRule to startup the service. This example runs all interactions using spocks Unroll feature ```groovy class ReadmeExamplePactJVMProviderSpockSpec extends Specification { @ClassRule @Shared TestRule startServiceRule = new DropwizardAppRule<DropwizardConfiguration>(TestDropwizardApplication, ResourceHelpers.resourceFilePath('dropwizard/test-config.yaml')) @Shared ProviderInfo serviceProvider ProviderVerifier verifier def setupSpec() { serviceProvider = new ProviderInfo('Dropwizard App') serviceProvider.protocol = 'http' serviceProvider.host = 'localhost' serviceProvider.port = 8080 serviceProvider.path = '/' serviceProvider.hasPactWith('zoo_app') { pactSource = new FileSource(new File(ResourceHelpers.resourceFilePath('pacts/zoo_app-animal_service.json'))) } } def setup() { verifier = new ProviderVerifier() } def cleanup() { // cleanup provider state // ie. db.truncateAllTables() } def cleanupSpec() { // cleanup provider } @Unroll def "Provider Pact - With Consumer #consumer"() { expect: verifyConsumerPact(consumer).empty where: consumer << serviceProvider.consumers } private Map verifyConsumerPact(ConsumerInfo consumer) { Map failures = [:] verifier.initialiseReporters(serviceProvider) verifier.runVerificationForConsumer(failures, serviceProvider, consumer) if (!failures.empty) { verifier.displayFailures(failures) } failures } } ```

Last Version: 3.6.15

Release Date:

Apache BookKeeper :: Stats Providers :: Prometheus

io.streamnative.stats : prometheus-metrics-provider

The Apache Software Foundation provides support for the Apache community of open-source software projects. The Apache projects are characterized by a collaborative, consensus based development process, an open and pragmatic software license, and a desire to create high quality software that leads the way in its field. We consider ourselves not simply a group of projects sharing a server, but rather a community of developers and users.

Last Version: 4.14.3.1

Release Date:

pact-jvm-provider-junit_2.12

au.com.dius : pact-jvm-provider-junit_2.12

# Pact junit runner ## Overview Library provides ability to play contract tests against a provider service in JUnit fashionable way. Supports: - Out-of-the-box convenient ways to load pacts - Easy way to change assertion strategy - **org.junit.BeforeClass**, **org.junit.AfterClass** and **org.junit.ClassRule** JUnit annotations, that will be run once - before/after whole contract test suite. - **org.junit.Before**, **org.junit.After** and **org.junit.Rule** JUnit annotations, that will be run before/after each test of an interaction. - **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change, all methods annotated by `@State` with appropriate the state listed will be invoked. These methods must either take no parameters or a single Map parameter. ## Example of HTTP test ```java @RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner @Provider("myAwesomeService") // Set up name of tested provider @PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation) public class ContractTest { // NOTE: this is just an example of embedded service that listens to requests, you should start here real service @ClassRule //Rule will be applied once: before/after whole contract test suite public static final ClientDriverRule embeddedService = new ClientDriverRule(8332); @BeforeClass //Method will be run once: before whole contract test suite public static void setUpService() { //Run DB, create schema //Run service //... } @Before //Method will be run before each test of interaction public void before() { // Rest data // Mock dependent service responses // ... embeddedService.addExpectation( onRequestTo("/data"), giveEmptyResponse() ); } @State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state public void toDefaultState() { // Prepare service before interaction that require "default" state // ... System.out.println("Now service in default state"); } @State("with-data") // Method will be run before testing interactions that require "with-data" state public void toStateWithData(Map data) { // Prepare service before interaction that require "with-data" state. The provider state data will be passed // in the data parameter // ... System.out.println("Now service in state using data " + data); } @TestTarget // Annotation denotes Target that will be used for tests public final Target target = new HttpTarget(8332); // Out-of-the-box implementation of Target (for more information take a look at Test Target section) } ``` ## Example of AMQP Message test ```java @RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner @Provider("myAwesomeService") // Set up name of tested provider @PactBroker(host="pactbroker", port = "80") public class ConfirmationKafkaContractTest { @TestTarget // Annotation denotes Target that will be used for tests public final Target target = new AmqpTarget(); // Out-of-the-box implementation of Target (for more information take a look at Test Target section) @BeforeClass //Method will be run once: before whole contract test suite public static void setUpService() { //Run DB, create schema //Run service //... } @Before //Method will be run before each test of interaction public void before() { // Message data preparation // ... } @PactVerifyProvider('an order confirmation message') String verifyMessageForOrder() { Order order = new Order() order.setId(10000004) order.setPrice(BigDecimal.TEN) order.setUnits(15) def message = new ConfirmationKafkaMessageBuilder() .withOrder(order) .build() JsonOutput.toJson(message) } } ``` ## Provider state callback methods For the provider states in the pact being verified, you can define methods to be invoked to setup the correct state for each interaction. Just annotate a method with the `au.com.dius.pact.provider.junit.State` annotation and the method will be invoked before the interaction is verified. For example: ```java @State("SomeProviderState") // Must match the state description in the pact file public void someProviderState() { // Do what you need to set the correct state } ``` If there are parameters in the pact file, just add a Map parameter to the method to be able to access those parameters. ```java @State("SomeProviderState") public void someProviderState(Map<String, Object> providerStateParameters) { // Do what you need to set the correct state } ``` ### Provider state teardown methods [3.5.22+] If you need to tear down your provider state, you can annotate a method with the `@State` annotation with the action set to `StateChangeAction.TEARDOWN` and it will be invoked after the interaction is verified. ```java @State("SomeProviderState", action = StateChangeAction.TEARDOWN) public void someProviderStateCleanup() { // Do what you need to to teardown the state } ``` #### Returning values that can be injected (3.6.11+) You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/au.com.dius:pact-jvm-provider-junit_2.12:jar:3.6.15' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For this to work, just make your provider state method return a Map of the values. ### Using multiple classes for the state change methods If you have a large number of state change methods, you can split things up by moving them to other classes. There are two ways you can do this: #### Use interfaces You can put the state change methods on interfaces and then have your test class implement those interfaces. See [StateAnnotationsOnInterfaceTest](src/test/java/au/com/dius/pact/provider/junit/StateAnnotationsOnInterfaceTest.java) for an example. #### Specify the additional classes on the test target You can provide the additional classes to the test target with the `withStateHandler` or `setStateHandlers` methods. See [BooksPactProviderTest](pact-jvm-provider-spring/src/test/java/au/com/dius/pact/provider/spring/BooksPactProviderTest.java) for an example. ## Pact source The Pact runner will automatically collect pacts based on annotations on the test class. For this purpose there are 3 out-of-the-box options (files from a directory, files from a set of URLs or a pact broker) or you can easily add your own Pact source. If you need to load a single pact file from the file system, use the `PactUrl` with the URL set to the file path. **Note:** You can only define one source of pacts per test class. ### Download pacts from a pact-broker To use pacts from a Pact Broker, annotate the test class with `@PactBroker(host="host.of.pact.broker.com", port = "80")`. From _version 3.2.2/2.4.3+_ you can also specify the protocol, which defaults to "http". The pact broker will be queried for all pacts with the same name as the provider annotation. For example, test all pacts for the "Activity Service" in the pact broker: ```java @RunWith(PactRunner.class) @Provider("Activity Service") @PactBroker(host = "localhost", port = "80") public class PactJUnitTest { @TestTarget public final Target target = new HttpTarget(5050); } ``` #### _Version 3.2.3/2.4.4+_ - Using Java System properties The pact broker loader was updated to allow system properties to be used for the hostname, port or protocol. The port was changed to a string to allow expressions to be set. To use a system property or environment variable, you can place the property name in `${}` expression de-markers: ```java @PactBroker(host="${pactbroker.hostname}", port = "80") ``` You can provide a default value by separating the property name with a colon (`:`): ```java @PactBroker(host="${pactbroker.hostname:localhost}", port = "80") ``` #### _Version 3.5.3+_ - More Java System properties The default values of the `@PactBroker` annotation now enable variable interpolation. The following keys may be managed through the environment * `pactbroker.host` * `pactbroker.port` * `pactbroker.protocol` * `pactbroker.tags` (comma separated) * `pactbroker.auth.username` (for basic auth) * `pactbroker.auth.password` (for basic auth) * `pactbroker.auth.token` (for bearer auth) * `pactbroker.consumers` (comma separated list to filter pacts by consumer; if not provided, will fetch all pacts for the provider) #### _Version 3.2.4/2.4.6+_ - Using tags with the pact broker The pact broker allows different versions to be tagged. To load all the pacts: ```java @PactBroker(host="pactbroker", port = "80", tags = {"latest", "dev", "prod"}) ``` The default value for tags is `latest` which is not actually a tag but instead corresponds to the latest version ignoring the tags. If there are multiple consumers matching the name specified in the provider annotation then the latest pact for each of the consumers is loaded. For any other value the latest pact tagged with the specified tag is loaded. Specifying multiple tags is an OR operation. For example if you specify `tags = {"dev", "prod"}` then both the latest pact file tagged with `dev` and the latest pact file taggged with `prod` is loaded. #### _Version 3.3.4/2.4.19+_ - Using basic auth with the with the pact broker You can use basic authentication with the `@PactBroker` annotation by setting the `authentication` value to a `@PactBrokerAuth` annotation. For example: ```java @PactBroker(host = "${pactbroker.url:localhost}", port = "1234", tags = {"latest", "prod", "dev"}, authentication = @PactBrokerAuth(username = "test", password = "test")) ``` Bearer tokens are also supported. For example: ```java @PactBroker(host = "${pactbroker.url:localhost}", port = "1234", tags = {"latest", "prod", "dev"}, authentication = @PactBrokerAuth(token = "test")) ``` The `token`, `username` and `password` values also take Java system property expressions. Preemptive Authentication can be enabled by setting the `pact.pactbroker.httpclient.usePreemptiveAuthentication` Java system property to `true`. ### Pact Url To use pacts from urls annotate the test class with ```java @PactUrl(urls = {"http://build.server/zoo_app-animal_service.json"} ) ``` If you need to load a single pact file from the file system, you can use the `PactUrl` with the URL set to the file path. ### Pact folder To use pacts from a resource folder of the project annotate test class with ```java @PactFolder("subfolder/in/resource/directory") ``` ### Custom pacts source It's possible to use a custom Pact source. For this, implement interface `au.com.dius.pact.provider.junit.loader.PactLoader` and annotate the test class with `@PactSource(MyOwnPactLoader.class)`. **Note:** class `MyOwnPactLoader` must have a default empty constructor or a constructor with one argument of class `Class` which at runtime will be the test class so you can get custom annotations of test class. ### Filtering the interactions that are verified [version 3.5.3+] By default, the pact runner will verify all pacts for the given provider. You can filter the pacts and interactions by the following methods. #### Filtering by Consumer You can run only those pacts for a particular consumer by adding a `@Consumer` annotation to the test class. For example: ```java @RunWith(PactRunner.class) @Provider("Activity Service") @Consumer("Activity Consumer") @PactBroker(host = "localhost", port = "80") public class PactJUnitTest { @TestTarget public final Target target = new HttpTarget(5050); } ``` #### Filtering by Provider State You can filter the interactions that are executed by adding a `@PactFilter` annotation to your test class. The pact filter annotation will then only verify interactions that have a matching provider state. You can provide multiple states to match with. For example: ```java @RunWith(PactRunner.class) @Provider("Activity Service") @PactBroker(host = "localhost", port = "80") @PactFilter('Activity 100 exists in the database') public class PactJUnitTest { @TestTarget public final Target target = new HttpTarget(5050); } ``` You can also use regular expressions with the filter [version 3.5.3+]. For example: ```java @RunWith(PactRunner.class) @PactFilter('Activity \\d+ exists in the database') public class PactJUnitTest { } ``` ### Setting the test to not fail when no pacts are found [version 3.5.3+] By default the pact runner will fail the verification test if no pact files are found to verify. To change the failure into a warning, add a `@IgnoreNoPactsToVerify` annotation to your test class. #### Ignoring IO errors loading pact files [version 3.5.24+] You can also set the test to ignore any IO and parser exceptions when loading the pact files by setting the `ignoreIoErrors` attribute on the annotation to `"true"` or setting the JVM system property `pact.verification.ignoreIoErrors` to `true`. ** WARNING! Do not enable this on your CI server, as this could result in your build passing with no providers having been verified due to a configuration error. ** ## Test target The field in test class of type `au.com.dius.pact.provider.junit.target.Target` annotated with `au.com.dius.pact.provider.junit.target.TestTarget` will be used for actual Interaction execution and asserting of contract. **Note:** there must be exactly 1 such field, otherwise an `InitializationException` will be thrown. ### HttpTarget `au.com.dius.pact.provider.junit.target.HttpTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target` that will play pacts as http request and assert response from service by matching rules from pact. _Version 3.2.2/2.4.3+_ you can also specify the protocol, defaults to "http". ### AmqpTarget `au.com.dius.pact.provider.junit.target.AmqpTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target` that will play pacts as an AMQP message and assert response from service by matching rules from pact. **Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least version 2.22.1 uses an isolated classpath. For example, configure it by adding the following to your POM: ```xml <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.22.1</version> <configuration> <useSystemClassLoader>false</useSystemClassLoader> </configuration> </plugin> ``` #### Modifying the requests before they are sent [Version 3.2.3/2.4.5+] Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The HttpTarget supports request filters by annotating methods on the test class with `@TargetRequestFilter`. These methods must be public void methods that take a single HttpRequest parameter. For example: ```java @TargetRequestFilter public void exampleRequestFilter(HttpRequest request) { request.addHeader("Authorization", "OAUTH hdsagasjhgdjashgdah..."); } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! #### Turning off URL decoding of the paths in the pact file [version 3.3.3+] By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ### Custom Test Target It's possible to use custom `Target`, for that interface `Target` should be implemented and this class can be used instead of `HttpTarget`. # Verification Reports [versions 3.2.7/2.4.9+] The default test behaviour is to display the verification being done to the console, and pass or fail the test via the normal JUnit mechanism. From versions 3.2.7/2.4.9+, additional reports can be generated from the tests. ## Enabling additional reports via annotations on the test classes A `@VerificationReports` annotation can be added to any pact test class which will control the verification output. The annotation takes a list report types and an optional report directory (defaults to "target/pact/reports"). The currently supported report types are `console`, `markdown` and `json`. For example: ```java @VerificationReports({"console", "markdown"}) public class MyPactTest { ``` will enable the markdown report in addition to the normal console output. And, ```java @VerificationReports(value = {"markdown"}, reportDir = "/myreports") public class MyPactTest { ``` will disable the normal console output and write the markdown reports to "/myreports". ## Enabling additional reports via Java system properties or environment variables The additional reports can also be enabled with Java System properties or environment variables. The following two properties have been introduced: `pact.verification.reports` and `pact.verification.reportDir`. `pact.verification.reports` is the comma separated list of report types to enable (e.g. `console,json,markdown`). `pact.verification.reportDir` is the directory to write reports to (defaults to "target/pact/reports"). ## Additional Reports The following report types are available in addition to console output (`console`, which is enabled by default): `markdown`, `json`. You can also provide a fully qualified classname as report so custom reports are also supported. This class must implement `au.com.dius.pact.provider.reporters.VerifierReporter` interface in order to be correct custom implementation of a report. # Publishing verification results to a Pact Broker [version 3.5.4+] For pacts that are loaded from a Pact Broker, the results of running the verification can be published back to the broker against the URL for the pact. You will be able to see the result on the Pact Broker home screen. You need to set the version of the provider that is verified using the `pact.provider.version` system property. To enable publishing of results, set the property `pact.verifier.publishResults` to `true` [version 3.5.18+].

Last Version: 3.6.15

Release Date:

Last Version: 7.16.7

Release Date:

Last Version: 3.18.0-RC2

Release Date:

ODL :: groupbasedpolicy :: sxp-ep-provider

org.opendaylight.groupbasedpolicy : sxp-ep-provider

OpenDaylight is leading the transformation to Open Software Defined Networking (SDN). For more information, please see https://www.opendaylight.org

Last Version: 0.7.4

Release Date:

Mersey Gradle Catalog

io.github.merseyside : time

Version Catalog from Gradle 7.0

Last Version: 1.1.3

Release Date:

Last Version: 0.17.5

Release Date:

Last Version: 2.6.2

Release Date:

Last Version: 1.3

Release Date:

Gravitee.io APIM - Resource - OAuth2

io.gravitee.resource : gravitee-resource-oauth2-provider-generic

The resource is defined to introspect an access_token generated by a generic OAuth2 authorization server.

Last Version: 2.0.0

Release Date:

Last Version: 1.3.0

Release Date:

Last Version: 1.0.0

Release Date:

Last Version: 3.1.4

Release Date:

Bck2Brwsr API Profile

org.apidesign.bck2brwsr : emul

Java.net - The Source for Java Technology Collaboration

Last Version: 0.54

Release Date:

Riptide: Timeout

org.zalando : riptide-timeout

Client side response routing

Last Version: 3.0.0-RC.4

Release Date:

Last Version: 2.6.3

Release Date:

Gravitee.io APIM - Resource - OAuth2 Provider - Access Management

io.gravitee.resource : gravitee-resource-oauth2-provider-am

The resource is defined to introspect an access_token generated by a Gravitee.io Access Management instance.

Last Version: 2.0.0

Release Date:

JSON Small and Fast Parser mini edition

net.minidev : json-smart-mini

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is completely language independent but uses conventions that are familiar to programmers of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-interchange language.

Last Version: 1.3.2

Release Date:

Quarkus - IDE Launcher

io.quarkus : quarkus-ide-launcher

Build parent to bring in required dependencies

Last Version: 2.10.0.Final

Release Date:

rider-core

com.github.database-rider : rider-core

Database testing made easy with JUnit and DBUnit.

Last Version: 1.32.3

Release Date:

Suneidesis

com.harium.suneidesis : core

Project to represent knowledge

Last Version: 1.6.6

Release Date:

Last Version: 0.10.6

Release Date:

Last Version: 7.0.0-M4

Release Date: