Unit Testing

Zipkin JUnit

org.apache.zipkin.zipkin2 : zipkin-junit

JUnit rule to spin-up a Zipkin server during tests

Last Version: 2.14.0

Release Date:

Armeria (armeria-junit5)

kr.ikhoon.armeria : armeria-junit5

Asynchronous HTTP/2 RPC/REST client/server library built on top of Java 8, Netty, Thrift and gRPC (armeria-junit5)

Last Version: 0.1.0-rc1

Release Date:

Last Version: 2.7.3

Release Date:

jamon-junit

org.jamon : jamon-junit

Jamon unit test support classes

Last Version: 2.4.1

Release Date:

org-netbeans-modules-maven-junit

org.netbeans.modules : org-netbeans-modules-maven-junit

Apache NetBeans is an integrated development environment, tooling platform, and application framework.

Last Version: RELEASE140

Release Date:

junithelper-core

org.junithelper : junithelper-core

Sonatype helps open source projects to set up Maven repositories on https://oss.sonatype.org/

Last Version: 1.12

Release Date:

Last Version: 2.0.5

Release Date:

Last Version: 2.0.0

Release Date:

Last Version: 0.1.1

Release Date:

Junit Model

com.github.baev : junit-model

The parent pom.xml for our open source projects

Last Version: 1.0

Release Date:

Spring Boot System Test

org.testifyproject.junit4 : spring-boot-system-test

A module that contains a JUnit test runner for running SpringBoot system tests

Last Version: 1.0.6

Release Date:

tourniquet-selenium

io.tourniquet.junit : tourniquet-selenium

Library for Selenium Context handling.

Last Version: 0.4.8

Release Date:

Last Version: 2.7.3

Release Date:

spock-junit5

ru.vyarus : spock-junit5

Junit 5 extensions support for Spock Framework 2

Last Version: 1.0.0

Release Date:

Last Version: 3.8.1

Release Date:

Last Version: 1.0.0

Release Date:

Camunda Process Test Coverage JUnit5 Platform 8

org.camunda.community.process_test_coverage : camunda-process-test-coverage-junit5-platform-8

Helper library to visualize and assert which parts of a BPMN process have been covered by a test.

Last Version: 2.0.0

Release Date:

juniter-core

org.eluder.juniter : juniter-core

Framework that provides additional features to JUnit

Last Version: 1.1.2

Release Date:

Liftwizard JUnit Rule: Match JSON

io.liftwizard : liftwizard-junit-rule-match-json

Liftwizard is a collection of bundles and add-ons for Dropwizard, the Java framework for writing web services.

Last Version: 0.25.0

Release Date:

AP4K :: Testing :: Kubernetes

io.ap4k : kubernetes-junit

A collection of annotations and processors for Kubernetes

Last Version: 0.5.0

Release Date:

BundleBee :: JUnit 5

io.yupiik : bundlebee-junit5

A simple JUnit 5 extension helping to validate alveoli.

Last Version: 1.0.15

Release Date:

rxmicro-test-dbunit-junit

io.rxmicro : rxmicro-test-dbunit-junit

The module designed for test writing using the JUnit 5 and DbUnit frameworks.

Last Version: 0.9

Release Date:

JUnit4 for OSGi Bundle

com.github.nfalco79 : junit4osgi-bundle

This bundle provides the JUnit library in as an OSGi bundle.

Last Version: 1.2.15

Release Date:

junit

au.com.dius.pact.provider : junit

# Pact junit runner ## Dependency The library is available on maven central using: * group-id = `au.com.dius.pact.provider` * artifact-id = `junit` * version-id = `4.1.x` ## Overview Library provides ability to play contract tests against a provider service in JUnit fashionable way. Supports: - Out-of-the-box convenient ways to load pacts - Easy way to change assertion strategy - **org.junit.BeforeClass**, **org.junit.AfterClass** and **org.junit.ClassRule** JUnit annotations, that will be run once - before/after whole contract test suite. - **org.junit.Before**, **org.junit.After** and **org.junit.Rule** JUnit annotations, that will be run before/after each test of an interaction. - **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change, all methods annotated by `@State` with appropriate the state listed will be invoked. These methods must either take no parameters or a single Map parameter. ## Example of HTTP test ```java @RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner @Provider("myAwesomeService") // Set up name of tested provider @PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation) public class ContractTest { // NOTE: this is just an example of embedded service that listens to requests, you should start here real service @ClassRule //Rule will be applied once: before/after whole contract test suite public static final ClientDriverRule embeddedService = new ClientDriverRule(8332); @BeforeClass //Method will be run once: before whole contract test suite public static void setUpService() { //Run DB, create schema //Run service //... } @Before //Method will be run before each test of interaction public void before() { // Rest data // Mock dependent service responses // ... embeddedService.addExpectation( onRequestTo("/data"), giveEmptyResponse() ); } @State({"default", "no-data"}) // Method will be run before testing interactions that require "default" or "no-data" state public void toDefaultState() { // Prepare service before interaction that require "default" state // ... System.out.println("Now service in default state"); } @State("with-data") // Method will be run before testing interactions that require "with-data" state public void toStateWithData(Map data) { // Prepare service before interaction that require "with-data" state. The provider state data will be passed // in the data parameter // ... System.out.println("Now service in state using data " + data); } @TestTarget // Annotation denotes Target that will be used for tests public final Target target = new HttpTarget(8332); // Out-of-the-box implementation of Target (for more information take a look at Test Target section) } ``` ## Example of Message test ```java @RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner @Provider("myAwesomeService") // Set up name of tested provider @PactBroker(host="pactbroker", port = "80") public class ConfirmationKafkaContractTest { @TestTarget // Annotation denotes Target that will be used for tests public final Target target = new MessageTarget(); // Out-of-the-box implementation of Target (for more information take a look at Test Target section) @BeforeClass //Method will be run once: before whole contract test suite public static void setUpService() { //Run DB, create schema //Run service //... } @Before //Method will be run before each test of interaction public void before() { // Message data preparation // ... } @PactVerifyProvider('an order confirmation message') String verifyMessageForOrder() { Order order = new Order() order.setId(10000004) order.setPrice(BigDecimal.TEN) order.setUnits(15) def message = new ConfirmationKafkaMessageBuilder() .withOrder(order) .build() JsonOutput.toJson(message) } } ``` ### Example of Message test that verifies metadata To have the message metadata - such as the topic - also verified you need to return a `MessageAndMetadata` from the invoked method that contains the payload and metadata to be validation. For example, to verify the metadata of an integration using the Spring [Message](https://docs.spring.io/spring-integration/reference/html/message.html) interface, you can do something like the following: ```java ... @PactVerifyProvider("a product event update") public MessageAndMetadata verifyMessageForOrder() { ProductEvent product = new ProductEvent("id1", "product name", "product type", "v1", EventType.CREATED); Message<String> message = new ProductMessageBuilder().withProduct(product).build(); return generateMessageAndMetadata(message); } private MessageAndMetadata generateMessageAndMetadata(Message<String> message) { HashMap<String, Object> metadata = new HashMap<String, Object>(); message.getHeaders().forEach((k, v) -> metadata.put(k, v)); return new MessageAndMetadata(message.getPayload().getBytes(), metadata); } ``` _NOTE: this requires you to add medadata expections in your consumer test_ ## Provider state callback methods For the provider states in the pact being verified, you can define methods to be invoked to setup the correct state for each interaction. Just annotate a method with the `au.com.dius.pact.provider.junit.State` annotation and the method will be invoked before the interaction is verified. For example: ```java @State("SomeProviderState") // Must match the state description in the pact file public void someProviderState() { // Do what you need to set the correct state } ``` If there are parameters in the pact file, just add a Map parameter to the method to be able to access those parameters. ```java @State("SomeProviderState") public void someProviderState(Map<String, Object> providerStateParameters) { // Do what you need to set the correct state } ``` ### Provider state teardown methods If you need to tear down your provider state, you can annotate a method with the `@State` annotation with the action set to `StateChangeAction.TEARDOWN` and it will be invoked after the interaction is verified. ```java @State("SomeProviderState", action = StateChangeAction.TEARDOWN) public void someProviderStateCleanup() { // Do what you need to to teardown the state } ``` #### Returning values that can be injected You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/au.com.dius.pact.provider:junit:jar:4.4.0-beta.2' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For this to work, just make your provider state method return a Map of the values. ### Using multiple classes for the state change methods If you have a large number of state change methods, you can split things up by moving them to other classes. There are two ways you can do this: #### Use interfaces You can put the state change methods on interfaces and then have your test class implement those interfaces. See [StateAnnotationsOnInterfaceTest](https://github.com/DiUS/pact-jvm/blob/master/provider/junit/src/test/java/au/com/dius/pact/provider/junit/StateAnnotationsOnInterfaceTest.java) for an example. #### Specify the additional classes on the test target You can provide the additional classes to the test target with the `withStateHandler` or `setStateHandlers` methods. See [BooksPactProviderTest](https://github.com/DiUS/pact-jvm/blob/master/provider/spring/src/test/java/au/com/dius/pact/provider/spring/BooksPactProviderTest.java) for an example. ## Pact source The Pact runner will automatically collect pacts based on annotations on the test class. For this purpose there are 3 out-of-the-box options (files from a directory, files from a set of URLs or a pact broker) or you can easily add your own Pact source. If you need to load a single pact file from the file system, use the `PactUrl` with the URL set to the file path. **Note:** You can only define one source of pacts per test class. ### Download pacts from a pact-broker To use pacts from a Pact Broker, annotate the test class with `@PactBroker(host="host.of.pact.broker.com", port = "80")`. You can also specify the protocol, which defaults to "http". The pact broker will be queried for all pacts with the same name as the provider annotation. For example, test all pacts for the "Activity Service" in the pact broker: ```java @RunWith(PactRunner.class) @Provider("Activity Service") @PactBroker(host = "localhost", port = "80") public class PactJUnitTest { @TestTarget public final Target target = new HttpTarget(5050); } ``` #### Using Java System properties The pact broker loader was updated to allow system properties to be used for the hostname, port or protocol. The port was changed to a string to allow expressions to be set. To use a system property or environment variable, you can place the property name in `${}` expression de-markers: ```java @PactBroker(host="${pactbroker.hostname}", port = "80") ``` You can provide a default value by separating the property name with a colon (`:`): ```java @PactBroker(host="${pactbroker.hostname:localhost}", port = "80") ``` #### More Java System properties The default values of the `@PactBroker` annotation now enable variable interpolation. The following keys may be managed through the environment * `pactbroker.host` * `pactbroker.port` * `pactbroker.scheme` * `pactbroker.tags` (comma separated) * `pactbroker.auth.username` (for basic auth) * `pactbroker.auth.password` (for basic auth) * `pactbroker.auth.token` (for bearer auth) * `pactbroker.consumers` (comma separated list to filter pacts by consumer; if not provided, will fetch all pacts for the provider) #### Using tags with the pact broker The pact broker allows different versions to be tagged. To load all the pacts: ```java @PactBroker(host="pactbroker", port = "80", tags = {"latest", "dev", "prod"}) ``` The default value for tags is `latest` which is not actually a tag but instead corresponds to the latest version ignoring the tags. If there are multiple consumers matching the name specified in the provider annotation then the latest pact for each of the consumers is loaded. For any other value the latest pact tagged with the specified tag is loaded. Specifying multiple tags is an OR operation. For example if you specify `tags = {"dev", "prod"}` then both the latest pact file tagged with `dev` and the latest pact file taggged with `prod` is loaded. In 4.1.4+, tags was deprecated in favor of consumerVersionSelectors. Consumer version selectors give you the ability to include pacts for the latest version of a tag, or all versions of a tag. ```java @PactBroker( host="pactbroker", port="80", consumerVersionSelectors={ @ConsumerVersionSelector(tag = "dev"), // Verify the latest version tagged with dev @ConsumerVersionSelector(tag = "prod", latest = "false") // Verify all versions tagged with prod } ) ``` #### Using authentication with the pact broker You can use basic authentication with the `@PactBroker` annotation by setting the `authentication` value to a `@PactBrokerAuth` annotation. For example: ```java @PactBroker(host = "${pactbroker.url:localhost}", port = "1234", tags = {"latest", "prod", "dev"}, authentication = @PactBrokerAuth(username = "test", password = "test")) ``` Bearer tokens are also supported. For example: ```java @PactBroker(host = "${pactbroker.url:localhost}", port = "1234", tags = {"latest", "prod", "dev"}, authentication = @PactBrokerAuth(token = "test")) ``` The `token`, `username` and `password` values also take Java system property expressions. Preemptive Authentication can be enabled by setting the `pact.pactbroker.httpclient.usePreemptiveAuthentication` Java system property to `true`. ### Allowing just the changed pact specified in a webhook to be verified [4.0.6+] When a consumer publishes a new version of a pact file, the Pact broker can fire off a webhook with the URL of the changed pact file. To allow only the changed pact file to be verified, you can override the URL by adding the annotation `@AllowOverridePactUrl` to your test class and then setting using the `pact.filter.consumers` and `pact.filter.pacturl` values as either Java system properties or environment variables. If you have annotated your test class with `@Consumer` you don't need to provide `pact.filter.consumers`. ### Pact Url To use pacts from urls annotate the test class with ```java @PactUrl(urls = {"http://build.server/zoo_app-animal_service.json"}) ``` If you need to load a single pact file from the file system, you can use the `PactUrl` with the URL set to the file path. For authenticated URLs, specify the authentication on the annotation ```java @PactUrl(urls = {"http://build.server/zoo_app-animal_service.json"}, authentication = @Authentication(token = "1234ABCD")) ``` You can use either bearer token scheme (by setting the `token`), or basic auth by setting the `username` and `password`. JVM system properties or environment variables can also be used by placing the property/variable name in `${}` expressions. ```java @PactUrl(urls = {"http://build.server/zoo_app-animal_service.json"}, authentication = @Authentication(token = "${TOKEN}")) ``` ### Pact folder To use pacts from a resource folder of the project annotate test class with ```java @PactFolder("subfolder/in/resource/directory") ``` ### Custom pacts source It's possible to use a custom Pact source. For this, implement interface `au.com.dius.pact.provider.junit.loader.PactLoader` and annotate the test class with `@PactSource(MyOwnPactLoader.class)`. **Note:** class `MyOwnPactLoader` must have a default empty constructor or a constructor with one argument of class `Class` which at runtime will be the test class so you can get custom annotations of test class. ### Filtering the interactions that are verified By default, the pact runner will verify all pacts for the given provider. You can filter the pacts and interactions by the following methods. #### Filtering by Consumer You can run only those pacts for a particular consumer by adding a `@Consumer` annotation to the test class. For example: ```java @RunWith(PactRunner.class) @Provider("Activity Service") @Consumer("Activity Consumer") @PactBroker(host = "localhost", port = "80") public class PactJUnitTest { @TestTarget public final Target target = new HttpTarget(5050); } ``` #### Interaction Filtering You can filter the interactions that are executed by adding a `@PactFilter` annotation to your test class. The pact filter annotation will then only verify interactions that have a matching value, by default provider state. You can provide multiple values to match with. The filter criteria is defined by the filter property. The filter must implement the `au.com.dius.pact.provider.junit.filter.InteractionFilter` interface. Also check the `InteractionFilter` interface for default filter implementations. For example: ```java @RunWith(PactRunner.class) @PactFilter("Activity 100 exists in the database") public class PactJUnitTest { } ``` You can also use regular expressions with the filter. For example: ```java @RunWith(PactRunner.class) @PactFilter(values = {"^\\/somepath.*"}, filter = InteractionFilter.ByRequestPath.class) public class PactJUnitTest { } ``` **NOTE!** You will only be able to publish the verification results if all interactions have been verified. If an interaction is not covered because it was filtered out, you will not be able to publish. ##### Filtering the interactions that are run **(version 4.1.2+)** You can filter the interactions that are run by setting the JVM system property `pact.filter.description`. This propery takes a regular expression to match against the interaction description. **NOTE!** this property needs to be set on the test JVM if your build is running with Gradle or Maven. ### Setting the test to not fail when no pacts are found By default the pact runner will fail the verification test if no pact files are found to verify. To change the failure into a warning, add a `@IgnoreNoPactsToVerify` annotation to your test class. #### Ignoring IO errors loading pact files You can also set the test to ignore any IO and parser exceptions when loading the pact files by setting the `ignoreIoErrors` attribute on the annotation to `"true"` or setting the JVM system property `pact.verification.ignoreIoErrors` to `true`. ** WARNING! Do not enable this on your CI server, as this could result in your build passing with no providers having been verified due to a configuration error. ** ### Overriding the handling of a body data type **NOTE: version 4.1.3+** By default, bodies will be handled based on their content types. For binary contents, the bodies will be base64 encoded when written to the Pact file and then decoded again when the file is loaded. You can change this with an override property: `pact.content_type.override.<TYPE>.<SUBTYPE>=text|json|binary`. For instance, setting `pact.content_type.override.application.pdf=text` will treat PDF bodies as a text type and not encode/decode them. ### Controlling the generation of diffs **NOTE: version 4.2.7+** When there are mismatches with large bodies the calculation of the diff can take a long time . You can turn off the generation of the diffs with the JVM system property: `pact.verifier.generateDiff=true|false|<dataSize>`, where `dataSize`, if specified, must be a valid data size (for instance `100kb` or `1mb`). This will turn off the diff calculation for payloads that exceed this size. For instance, setting `pact.verifier.generateDiff=false` will turn off the generation of diffs for all bodies, while `pact.verifier.generateDiff=512kb` will only turn off the diffs if the actual or expected body is larger than 512kb. ## Test target The field in test class of type `au.com.dius.pact.provider.junit.target.Target` annotated with `au.com.dius.pact.provider.junit.target.TestTarget` will be used for actual Interaction execution and asserting of contract. **Note:** there must be exactly 1 such field, otherwise an `InitializationException` will be thrown. ### HttpTarget `au.com.dius.pact.provider.junit.target.HttpTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target` that will play pacts as http request and assert response from service by matching rules from pact. You can also specify the protocol, defaults to "http". ### MessageTarget `au.com.dius.pact.provider.junit.target.MessageTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target` that will play pacts as an message and assert response from service by matching rules from pact. **Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least version 2.22.1 uses an isolated classpath. For example, configure it by adding the following to your POM: ```xml <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.22.1</version> <configuration> <useSystemClassLoader>false</useSystemClassLoader> </configuration> </plugin> ``` #### Modifying the requests before they are sent **NOTE: `@TargetRequestFilter` is only for JUnit 4. For JUnit 5 see [JUnit 5 docs](/provider/junit5/README.md#modifying-the-requests-before-they-are-sent).** Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The HttpTarget supports request filters by annotating methods on the test class with `@TargetRequestFilter`. These methods must be public void methods that take a single HttpRequest parameter of type `org.apache.http.HttpRequest` (4.2.x and before) or `org.apache.hc.core5.http.HttpRequest` (4.3.0+). For example: ```java @TargetRequestFilter public void exampleRequestFilter(HttpRequest request) { request.addHeader("Authorization", "OAUTH hdsagasjhgdjashgdah..."); } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! #### Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ### Custom Test Target It's possible to use custom `Target`, for that interface `Target` should be implemented and this class can be used instead of `HttpTarget`. # Verification Reports The default test behaviour is to display the verification being done to the console, and pass or fail the test via the normal JUnit mechanism. Additional reports can be generated from the tests. ## Enabling additional reports via annotations on the test classes A `@VerificationReports` annotation can be added to any pact test class which will control the verification output. The annotation takes a list report types and an optional report directory (defaults to "target/pact/reports"). The currently supported report types are `console`, `markdown` and `json`. For example: ```java @VerificationReports({"console", "markdown"}) public class MyPactTest { ``` will enable the markdown report in addition to the normal console output. And, ```java @VerificationReports(value = {"markdown"}, reportDir = "/myreports") public class MyPactTest { ``` will disable the normal console output and write the markdown reports to "/myreports". ## Enabling additional reports via Java system properties or environment variables The additional reports can also be enabled with Java System properties or environment variables. The following two properties have been introduced: `pact.verification.reports` and `pact.verification.reportDir`. `pact.verification.reports` is the comma separated list of report types to enable (e.g. `console,json,markdown`). `pact.verification.reportDir` is the directory to write reports to (defaults to "target/pact/reports"). ## Additional Reports The following report types are available in addition to console output (`console`, which is enabled by default): `markdown`, `json`. You can also provide a fully qualified classname as report so custom reports are also supported. This class must implement `au.com.dius.pact.provider.reporters.VerifierReporter` interface in order to be correct custom implementation of a report. # Publishing verification results to a Pact Broker For pacts that are loaded from a Pact Broker, the results of running the verification can be published back to the broker against the URL for the pact. You will be able to see the result on the Pact Broker home screen. You need to set the version of the provider that is verified using the `pact.provider.version` system property. To enable publishing of results, set the Java system property or environment variable `pact.verifier.publishResults` to `true`. ### IMPORTANT NOTE!!!: this property needs to be set on the test JVM if your build is running with Gradle or Maven. Gradle and Maven do not pass in the system properties in to the test JVM from the command line. The system properties specified on the command line only control the build JVM (the one that runs Gradle or Maven), but the tests will run in a new JVM. See [Maven Surefire Using System Properties](https://maven.apache.org/surefire/maven-surefire-plugin/examples/system-properties.html) and [Gradle Test docs](https://docs.gradle.org/current/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:systemProperties). ## Tagging the provider before verification results are published [4.0.1+] You can have a tag pushed against the provider version before the verification results are published. To do this you need set the `pact.provider.tag` JVM system property to the tag value. From 4.1.8+, you can specify multiple tags with a comma separated string for the `pact.provider.tag` system property. ## Setting the provider branch before verification results are published [4.3.0-beta.7+] Pact Broker version 2.86.0 or later You can have a branch pushed against the provider version before the verification results are published. To do this you need set the `pact.provider.branch` JVM system property to the branch value. ## Setting the build URL for verification results [4.2.16/4.3.2+] You can specify a URL to link to your CI build output. To do this you need to set the `pact.verifier.buildUrl` JVM system property to the URL value. # Pending Pact Support (version 4.1.3 and later) If your Pact broker supports pending pacts, you can enable support for that by enabling that on your Pact broker annotation or with JVM system properties. You also need to provide the tags that will be published with your provider's verification results. The broker will then label any pacts found that don't have a successful verification result as pending. That way, if they fail verification, the verifier will ignore those failures and not fail the build. For example, with annotation: ```java @Provider("Activity Service") @PactBroker(host = "test.pactflow.io", tags = {"test"}, scheme = "https", enablePendingPacts = "true", providerTags = "master" ) public class PactJUnitTest { ``` You can also use the `pactbroker.enablePending` and `pactbroker.providerTags` JVM system properties. Then any pending pacts will not cause a build failure. # Work In Progress (WIP) Pact Support (version 4.1.5 and later) If your Pact broker supports wip pacts, you can enable support by enabling it on your Pact broker annotation, or with JVM system properties. You also need to enable pending pacts. Once enabled, your provider will verify any "work in progress" pacts that have been published since a given date. A WIP pact is a pact that is the latest for its tag that does not have any successful verification results with the provider tag. ```java @Provider("Activity Service") @PactBroker(host = "test.pactflow.io", tags = {"test"}, scheme = "https", enablePendingPacts = "true", providerTags = "master" includeWipPactsSince = "2020-06-19" ) public class PactJUnitTest { ``` You can also use the `pactbroker.includeWipPactsSince` JVM system property. Since all WIP pacts are also pending pacts, failed verifications will not cause a build failure. # Verifying V4 Pact files that require plugins (version 4.3.0+) Pact files that require plugins can be verified with version 4.3.0+. For details on how plugins work, see the [Pact plugin project](https://github.com/pact-foundation/pact-plugins). Each required plugin is defined in the `plugins` section in the Pact metadata in the Pact file. The plugins will be loaded from the plugin directory. By default, this is `~/.pact/plugins` or the value of the `PACT_PLUGIN_DIR` environment variable. Each plugin required by the Pact file must be installed there. You will need to follow the installation instructions for each plugin, but the default is to unpack the plugin into a sub-directory `<plugin-name>-<plugin-version>` (i.e., for the Protobuf plugin 0.0.0 it will be `protobuf-0.0.0`). The plugin manifest file must be present for the plugin to be able to be loaded. # Test Analytics We are tracking anonymous analytics to gather important usage statistics like JVM version and operating system. To disable tracking, set the 'pact_do_not_track' system property or environment variable to 'true'.

Last Version: 4.4.0-beta.2

Release Date:

junit-postgres

org.zalando.stups : junit-postgres

Parent pom.xml that can be used by STUPS Maven projects

Last Version: 0.8.1

Release Date:

quick-perf-junit4-spring5

org.quickperf : quick-perf-junit4-spring5

QuickPerf is a testing library for Java providing annotations to quickly evaluate some performance properties.

Last Version: 1.1.0

Release Date:

pact-jvm-consumer-junit_2.10

au.com.dius : pact-jvm-consumer-junit_2.10

pact-jvm-consumer-junit ======================= Provides a DSL and a base test class for use with Junit to build consumer tests. ##Dependency The library is available on maven central using: * group-id = `au.com.dius` * artifact-id = `pact-jvm-consumer-junit_2.11` * version-id = `3.0.x` ##Usage ### Using the base ConsumerPactTest To write a pact spec extend ConsumerPactTestMk2. This base class defines the following four methods which must be overridden in your test class. * *providerName:* Returns the name of the API provider that Pact will mock * *consumerName:* Returns the name of the API consumer that we are testing. * *createFragment:* Returns the PactFragment containing the interactions that the test setup using the ConsumerPactBuilder DSL * *runTest:* The actual test run. It receives the URL to the mock server as a parameter. Here is an example: ```java import au.com.dius.pact.consumer.dsl.PactDslWithProvider; import au.com.dius.pact.consumer.exampleclients.ConsumerClient; import au.com.dius.pact.consumer.ConsumerPactTest; import au.com.dius.pact.model.PactFragment; import org.junit.Assert; import java.io.IOException; import java.util.HashMap; import java.util.Map; import static org.junit.Assert.assertEquals; public class ExampleJavaConsumerPactTest extends ConsumerPactTest { @Override protected PactFragment createFragment(PactDslWithProvider builder) { Map<String, String> headers = new HashMap<String, String>(); headers.put("testreqheader", "testreqheadervalue"); return builder .given("test state") // NOTE: Using provider states are optional, you can leave it out .uponReceiving("ExampleJavaConsumerPactTest test interaction") .path("/") .method("GET") .headers(headers) .willRespondWith() .status(200) .headers(headers) .body("{\"responsetest\": true, \"name\": \"harry\"}") .given("test state 2") // NOTE: Using provider states are optional, you can leave it out .uponReceiving("ExampleJavaConsumerPactTest second test interaction") .method("OPTIONS") .headers(headers) .path("/second") .body("") .willRespondWith() .status(200) .headers(headers) .body("") .toFragment(); } @Override protected String providerName() { return "test_provider"; } @Override protected String consumerName() { return "test_consumer"; } @Override protected void runTest(String url) throws IOException { Assert.assertEquals(new ConsumerClient(url).options("/second"), 200); Map expectedResponse = new HashMap(); expectedResponse.put("responsetest", true); expectedResponse.put("name", "harry"); assertEquals(new ConsumerClient(url).getAsMap("/", ""), expectedResponse); assertEquals(new ConsumerClient(url).options("/second"), 200); } } ``` ### Using the Pact JUnit Rule Thanks to [@warmuuh](https://github.com/warmuuh) we have a JUnit rule that simplifies running Pact consumer tests. To use it, create a test class and then add the rule: #### 1. Add the Pact Rule to your test class to represent your provider. ```java @Rule public PactProviderRule mockProvider = new PactProviderRule("test_provider", "localhost", 8080, this); ``` The hostname and port are optional. If left out, it will default to localhost and a random available port. #### 2. Annotate a method with Pact that returns a pact fragment for the provider and consumer ```java @Pact(provider="test_provider", consumer="test_consumer") public PactFragment createFragment(PactDslWithProvider builder) { return builder .given("test state") .uponReceiving("ExampleJavaConsumerPactRuleTest test interaction") .path("/") .method("GET") .willRespondWith() .status(200) .body("{\"responsetest\": true}") .toFragment(); } ``` ##### Versions 3.0.2/2.2.13+ You can leave the provider name out. It will then use the provider name of the first mock provider found. I.e., ```java @Pact(consumer="test_consumer") // will default to the provider name from mockProvider public PactFragment createFragment(PactDslWithProvider builder) { return builder .given("test state") .uponReceiving("ExampleJavaConsumerPactRuleTest test interaction") .path("/") .method("GET") .willRespondWith() .status(200) .body("{\"responsetest\": true}") .toFragment(); } ``` #### 3. Annotate your test method with PactVerification to have it run in the context of the mock server setup with the appropriate pact from step 1 and 2 ```java @Test @PactVerification("test_provider") public void runTest() { Map expectedResponse = new HashMap(); expectedResponse.put("responsetest", true); assertEquals(new ConsumerClient("http://localhost:8080").get("/"), expectedResponse); } ``` ##### Versions 3.0.2/2.2.13+ You can leave the provider name out. It will then use the provider name of the first mock provider found. I.e., ```java @Test @PactVerification public void runTest() { // This will run against mockProvider Map expectedResponse = new HashMap(); expectedResponse.put("responsetest", true); assertEquals(new ConsumerClient("http://localhost:8080").get("/"), expectedResponse); } ``` For an example, have a look at [ExampleJavaConsumerPactRuleTest](src/test/java/au/com/dius/pact/consumer/examples/ExampleJavaConsumerPactRuleTest.java) ### Requiring a test with multiple providers The Pact Rule can be used to test with multiple providers. Just add a rule to the test class for each provider, and then include all the providers required in the `@PactVerification` annotation. For an example, look at [PactMultiProviderTest](src/test/java/au/com/dius/pact/consumer/pactproviderrule/PactMultiProviderTest.java). Note that if more than one provider fails verification for the same test, you will only receive a failure for one of them. Also, to have multiple tests in the same test class, the providers must be setup with random ports (i.e. don't specify a hostname and port). Also, if the provider name is left out of any of the annotations, the first one found will be used (which may not be the first one defined). ### Requiring the mock server to run with HTTPS [versions 3.2.7/2.4.9+] From versions 3.2.7/2.4.9+ the mock server can be started running with HTTPS using a self-signed certificate instead of HTTP. To enable this set the `https` parameter to `true`. E.g.: ```java @Rule public PactProviderRule mockTestProvider = new PactProviderRule("test_provider", "localhost", 8443, true, PactConfig.apply(PactSpecVersion.V2), this); // ^^^^ ``` For an exmaple test doing this, see [PactProviderHttpsTest](src/test/java/au/com/dius/pact/consumer/pactproviderrule/PactProviderHttpsTest.java). **NOTE:** The provider will start handling HTTPS requests using a self-signed certificate. Most HTTP clients will not accept connections to a self-signed server as the certificate is untrusted. You may need to enable insecure HTTPS with your client for this test to work. For an example of how to enable insecure HTTPS client connections with Apache Http Client, have a look at [InsecureHttpsRequest](src/test/java/org/apache/http/client/fluent/InsecureHttpsRequest.java). ### Using the Pact DSL directly Sometimes it is not convenient to use the ConsumerPactTest as it only allows one test per test class. The DSL can be used directly in this case. Example: ```java import au.com.dius.pact.consumer.ConsumerPactBuilder; import au.com.dius.pact.consumer.ConsumerPactTest; import au.com.dius.pact.consumer.PactError; import au.com.dius.pact.consumer.TestRun; import au.com.dius.pact.consumer.VerificationResult; import au.com.dius.pact.consumer.examples.client.ProviderClient; import au.com.dius.pact.model.MockProviderConfig; import au.com.dius.pact.model.PactFragment; import org.junit.Test; import java.io.IOException; import java.util.HashMap; import java.util.Map; import static org.junit.Assert.assertEquals; public class PactTest { @Test public void testPact() { PactFragment pactFragment = ConsumerPactBuilder .consumer("Some Consumer") .hasPactWith("Some Provider") .uponReceiving("a request to say Hello") .path("/hello") .method("POST") .body("{\"name\": \"harry\"}") .willRespondWith() .status(200) .body("{\"hello\": \"harry\"}") .toFragment(); MockProviderConfig config = MockProviderConfig.createDefault(); VerificationResult result = pactFragment.runConsumer(config, new TestRun() { @Override public void run(MockProviderConfig config) { Map expectedResponse = new HashMap(); expectedResponse.put("hello", "harry"); try { assertEquals(new ProviderClient(config.url()).hello("{\"name\": \"harry\"}"), expectedResponse); } catch (IOException e) { throw new RuntimeException(e); } } }); if (result instanceof PactError) { throw new RuntimeException(((PactError)result).error()); } assertEquals(ConsumerPactTest.PACT_VERIFIED, result); } } ``` ### The Pact JUnit DSL The DSL has the following pattern: ```java .consumer("Some Consumer") .hasPactWith("Some Provider") .given("a certain state on the provider") .uponReceiving("a request for something") .path("/hello") .method("POST") .body("{\"name\": \"harry\"}") .willRespondWith() .status(200) .body("{\"hello\": \"harry\"}") .uponReceiving("another request for something") .path("/hello") .method("POST") .body("{\"name\": \"harry\"}") .willRespondWith() .status(200) .body("{\"hello\": \"harry\"}") . . . .toFragment() ``` You can define as many interactions as required. Each interaction starts with `uponReceiving` followed by `willRespondWith`. The test state setup with `given` is a mechanism to describe what the state of the provider should be in before the provider is verified. It is only recorded in the consumer tests and used by the provider verification tasks. ### Building JSON bodies with PactDslJsonBody DSL The body method of the ConsumerPactBuilder can accept a PactDslJsonBody, which can construct a JSON body as well as define regex and type matchers. For example: ```java PactDslJsonBody body = new PactDslJsonBody() .stringType("name") .booleanType("happy") .hexValue("hexCode") .id() .ipAddress("localAddress") .numberValue("age", 100) .timestamp(); ``` #### DSL Matching methods The following matching methods are provided with the DSL. In most cases, they take an optional value parameter which will be used to generate example values (i.e. when returning a mock response). If no example value is given, a random one will be generated. | method | description | |--------|-------------| | string, stringValue | Match a string value (using string equality) | | number, numberValue | Match a number value (using Number.equals)\* | | booleanValue | Match a boolean value (using equality) | | stringType | Will match all Strings | | numberType | Will match all numbers\* | | integerType | Will match all numbers that are integers (both ints and longs)\* | | decimalType | Will match all real numbers (floating point and decimal)\* | | booleanType | Will match all boolean values (true and false) | | stringMatcher | Will match strings using the provided regular expression | | timestamp | Will match string containing timestamps. If a timestamp format is not given, will match an ISO timestamp format | | date | Will match string containing dates. If a date format is not given, will match an ISO date format | | time | Will match string containing times. If a time format is not given, will match an ISO time format | | ipAddress | Will match string containing IP4 formatted address. | | id | Will match all numbers by type | | hexValue | Will match all hexadecimal encoded strings | | uuid | Will match strings containing UUIDs | _\* Note:_ JSON only supports double precision floating point values. Depending on the language implementation, they may parsed as integer, floating point or decimal numbers. #### Ensuring all items in a list match an example (2.2.0+) Lots of the time you might not know the number of items that will be in a list, but you want to ensure that the list has a minimum or maximum size and that each item in the list matches a given example. You can do this with the `arrayLike`, `minArrayLike` and `maxArrayLike` functions. | function | description | |----------|-------------| | `eachLike` | Ensure that each item in the list matches the provided example | | `maxArrayLike` | Ensure that each item in the list matches the provided example and the list is no bigger than the provided max | | `minArrayLike` | Ensure that each item in the list matches the provided example and the list is no smaller than the provided min | For example: ```java DslPart body = new PactDslJsonBody() .minArrayLike("users", 1) .id() .stringType("name") .closeObject() .closeArray(); ``` This will ensure that the users list is never empty and that each user has an identifier that is a number and a name that is a string. __Version 3.2.4/2.4.6+__ You can specify the number of example items to generate in the array. The default is 1. ```java DslPart body = new PactDslJsonBody() .minArrayLike("users", 1, 2) .id() .stringType("name") .closeObject() .closeArray(); ``` This will generate the example body with 2 items in the users list. #### Root level arrays that match all items (version 2.2.11+) If the root of the body is an array, you can create PactDslJsonArray classes with the following methods: | function | description | |----------|-------------| | `arrayEachLike` | Ensure that each item in the list matches the provided example | | `arrayMinLike` | Ensure that each item in the list matches the provided example and the list is no bigger than the provided max | | `arrayMaxLike` | Ensure that each item in the list matches the provided example and the list is no smaller than the provided min | For example: ```java PactDslJsonArray.arrayEachLike() .date("clearedDate", "mm/dd/yyyy", date) .stringType("status", "STATUS") .decimalType("amount", 100.0) .closeObject() ``` This will then match a body like: ```json [ { "clearedDate" : "07/22/2015", "status" : "C", "amount" : 15.0 }, { "clearedDate" : "07/22/2015", "status" : "C", "amount" : 15.0 }, { "clearedDate" : "07/22/2015", "status" : "C", "amount" : 15.0 } ] ``` __Version 3.2.4/2.4.6+__ You can specify the number of example items to generate in the array. The default is 1. #### Matching JSON values at the root (Version 3.2.2/2.4.3+) For cases where you are expecting basic JSON values (strings, numbers, booleans and null) at the root level of the body and need to use matchers, you can use the `PactDslJsonRootValue` class. It has all the DSL matching methods for basic values that you can use. For example: ```java .consumer("Some Consumer") .hasPactWith("Some Provider") .uponReceiving("a request for a basic JSON value") .path("/hello") .willRespondWith() .status(200) .body(PactDslJsonRootValue.integerType()) ``` #### Matching any key in a map (3.3.1/2.5.0+) The DSL has been extended for cases where the keys in a map are IDs. For an example of this, see [#313](https://github.com/DiUS/pact-jvm/issues/313). In this case you can use the `eachKeyLike` method, which takes an example key as a parameter. For example: ```java DslPart body = new PactDslJsonBody() .object("one") .eachKeyLike("001", PactDslJsonRootValue.id(12345L)) // key like an id mapped to a matcher .closeObject() .object("two") .eachKeyLike("001-A") // key like an id where the value is matched by the following example .stringType("description", "Some Description") .closeObject() .closeObject() .object("three") .eachKeyMappedToAnArrayLike("001") // key like an id mapped to an array where each item is matched by the following example .id("someId", 23456L) .closeObject() .closeArray() .closeObject(); ``` For an example, have a look at [WildcardKeysTest](src/test/java/au/com/dius/pact/consumer/WildcardKeysTest.java). **NOTE:** The `eachKeyLike` method adds a `*` to the matching path, so the matching definition will be applied to all keys of the map if there is not a more specific matcher defined for a particular key. Having more than one `eachKeyLike` condition applied to a map will result in only one being applied when the pact is verified (probably the last). ### Matching on paths (version 2.1.5+) You can use regular expressions to match incoming requests. The DSL has a `matchPath` method for this. You can provide a real path as a second value to use when generating requests, and if you leave it out it will generate a random one from the regular expression. For example: ```java .given("test state") .uponReceiving("a test interaction") .matchPath("/transaction/[0-9]+") // or .matchPath("/transaction/[0-9]+", "/transaction/1234567890") .method("POST") .body("{\"name\": \"harry\"}") .willRespondWith() .status(200) .body("{\"hello\": \"harry\"}") ``` ### Matching on headers (version 2.2.2+) You can use regular expressions to match request and response headers. The DSL has a `matchHeader` method for this. You can provide an example header value to use when generating requests and responses, and if you leave it out it will generate a random one from the regular expression. For example: ```java .given("test state") .uponReceiving("a test interaction") .path("/hello") .method("POST") .matchHeader("testreqheader", "test.*value") .body("{\"name\": \"harry\"}") .willRespondWith() .status(200) .body("{\"hello\": \"harry\"}") .matchHeader("Location", ".*/hello/[0-9]+", "/hello/1234") ``` ### Matching on query parameters (version 3.3.7+) You can use regular expressions to match request query parameters. The DSL has a `matchQuery` method for this. You can provide an example value to use when generating requests, and if you leave it out it will generate a random one from the regular expression. For example: ```java .given("test state") .uponReceiving("a test interaction") .path("/hello") .method("POST") .matchQuery("a", "\\d+", "100") .matchQuery("b", "[A-Z]", "X") .body("{\"name\": \"harry\"}") .willRespondWith() .status(200) .body("{\"hello\": \"harry\"}") ``` ## Debugging pact failures When the test runs, Pact will start a mock provider that will listen for requests and match them against the expectations you setup in `createFragment`. If the request does not match, it will return a 500 error response. Each request received and the generated response is logged using [SLF4J](http://www.slf4j.org/). Just enable debug level logging for au.com.dius.pact.consumer.UnfilteredMockProvider. Most failures tend to be mismatched headers or bodies. ## Changing the directory pact files are written to (2.1.9+) By default, pact files are written to `target/pacts`, but this can be overwritten with the `pact.rootDir` system property. This property needs to be set on the test JVM as most build tools will fork a new JVM to run the tests. For Gradle, add this to your build.gradle: ```groovy test { systemProperties['pact.rootDir'] = "$buildDir/pacts" } ``` For maven, use the systemPropertyVariables configuration: ```xml <project> [...] <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.18</version> <configuration> <systemPropertyVariables> <pact.rootDir>some/other/directory</pact.rootDir> <buildDirectory>${project.basedir}/target</buildDirectory> [...] </systemPropertyVariables> </configuration> </plugin> </plugins> </build> [...] </project> ``` For SBT: ```scala fork in Test := true, javaOptions in Test := Seq("-Dpact.rootDir=some/other/directory") ``` # Publishing your pact files to a pact broker If you use Gradle, you can use the [pact Gradle plugin](https://github.com/DiUS/pact-jvm/tree/master/pact-jvm-provider-gradle#publishing-pact-files-to-a-pact-broker) to publish your pact files. # Pact Specification V3 Version 3 of the pact specification changes the format of pact files in the following ways: * Query parameters are stored in a map form and are un-encoded (see [#66](https://github.com/DiUS/pact-jvm/issues/66) and [#97](https://github.com/DiUS/pact-jvm/issues/97) for information on what this can cause). * Introduces a new message pact format for testing interactions via a message queue. ## Generating V3 spec pact files (3.1.0+, 2.3.0+) To have your consumer tests generate V3 format pacts, you can set the specification version to V3. If you're using the `ConsumerPactTest` base class, you can override the `getSpecificationVersion` method. For example: ```java @Override protected PactSpecVersion getSpecificationVersion() { return PactSpecVersion.V3; } ``` If you are using the `PactProviderRule`, you can pass the version into the constructor for the rule. ```java @Rule public PactProviderRule mockTestProvider = new PactProviderRule("test_provider", PactSpecVersion.V3, this); ``` ## Consumer test for a message consumer For testing a consumer of messages from a message queue, the `MessagePactProviderRule` rule class works in much the same way as the `PactProviderRule` class for Request-Response interactions, but will generate a V3 format message pact file. For an example, look at [ExampleMessageConsumerTest](https://github.com/DiUS/pact-jvm/blob/master/pact-jvm-consumer-junit%2Fsrc%2Ftest%2Fjava%2Fau%2Fcom%2Fdius%2Fpact%2Fconsumer%2Fv3%2FExampleMessageConsumerTest.java)

Last Version: 2.4.20

Release Date:

junit-annotations

com.vertispan.j2cl : junit-annotations

J2CL is a powerful, simple and lightweight transpiler from Java to Closure style JavaScript. The project is designed, implemented, and maintained by the J2CL team at Google. This distribution is slightly modified from the original and packaged for Maven Central by Vertispan LLC. The links and references in this pom.xml will reference the Vertispan fork, to ensure that any error introduced by our packaging are not incorrectly blamed on the upstream Google repository.

Last Version: 0.10.0-3c97afeac

Release Date:

devon4j-test-junit4

com.devonfw.java.modules : devon4j-test-junit4

This module is for Junit backward compatibility

Last Version: 2022.04.001

Release Date:

testcontainers-concord-junit5

ca.ibodrov.concord : testcontainers-concord-junit5

Allows running Concord in JUnit 5 tests using Testcontainers

Last Version: 0.0.40

Release Date:

robovm-junit-client

com.mobidevelop.robovm : robovm-junit-client

The RoboVM compiler translates Java bytecode into native ARM or x86 code. Apps run directly on the CPU. No interpreter or virtual machine involved.

Last Version: 2.3.16

Release Date:

Last Version: 2.7.3

Release Date:

org.junit:junit5-engine

org.junit : junit5-engine

Module "junit5-engine" of JUnit 5.

Last Version: 5.0.0-ALPHA

Release Date:

at.bestsolution.fx.test.junit

at.bestsolution.fx.test : at.bestsolution.fx.test.junit

API to implement JUnit tests for JavaFX applications

Last Version: 0.0.1

Release Date:

Vert.x JUnit 5 support :: WebClient support

io.vertx : vertx-junit5-web-client

Sonatype helps open source projects to set up Maven repositories on https://oss.sonatype.org/

Last Version: 4.0.0-milestone4

Release Date:

JUnit grading library

hr.fer.grading : junit-grading

Testing library to run with grading student examination.

Last Version: 0.12.0

Release Date:

zephyr-sync-report-junit

lv.ctco.zephyr : zephyr-sync-report-junit

Zephyr Sync is a tool, that allows your project to perform synchronization of automated test results to Zephyr - a JIRA addon for Test Management. The advanced configuration of the tool supports multiple report types to work with, as well as some restrictions to be applied during the sync.

Last Version: 0.0.15

Release Date:

Petals ESB - Components - CDK - JUnit framework

org.ow2.petals : petals-cdk-junit

The PEtALS component framework. This framework is used to easily create JBI components.

Last Version: 1.2.0

Release Date:

Last Version: 0.1.3

Release Date:

Last Version: 1.0.0

Release Date:

Last Version: 5.3.2

Release Date:

pact-jvm-provider-junit

au.com.dius : pact-jvm-provider-junit

# Pact junit runner ## Overview Library provides ability to play contract tests against a provider service in JUnit fashionable way. Supports: - Out-of-the-box convenient ways to load pacts - Easy way to change assertion strategy - **org.junit.BeforeClass**, **org.junit.AfterClass** and **org.junit.ClassRule** JUnit annotations, that will be run once - before/after whole contract test suite. - **org.junit.Before**, **org.junit.After** and **org.junit.Rule** JUnit annotations, that will be run before/after each test of an interaction. - **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change, all methods annotated by `@State` with appropriate the state listed will be invoked. These methods must either take no parameters or a single Map parameter. ## Example of HTTP test ```java @RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner @Provider("myAwesomeService") // Set up name of tested provider @PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation) public class ContractTest { // NOTE: this is just an example of embedded service that listens to requests, you should start here real service @ClassRule //Rule will be applied once: before/after whole contract test suite public static final ClientDriverRule embeddedService = new ClientDriverRule(8332); @BeforeClass //Method will be run once: before whole contract test suite public static void setUpService() { //Run DB, create schema //Run service //... } @Before //Method will be run before each test of interaction public void before() { // Rest data // Mock dependent service responses // ... embeddedService.addExpectation( onRequestTo("/data"), giveEmptyResponse() ); } @State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state public void toDefaultState() { // Prepare service before interaction that require "default" state // ... System.out.println("Now service in default state"); } @State("with-data") // Method will be run before testing interactions that require "with-data" state public void toStateWithData(Map data) { // Prepare service before interaction that require "with-data" state. The provider state data will be passed // in the data parameter // ... System.out.println("Now service in state using data " + data); } @TestTarget // Annotation denotes Target that will be used for tests public final Target target = new HttpTarget(8332); // Out-of-the-box implementation of Target (for more information take a look at Test Target section) } ``` ## Example of AMQP Message test ```java @RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner @Provider("myAwesomeService") // Set up name of tested provider @PactBroker(host="pactbroker", port = "80") public class ConfirmationKafkaContractTest { @TestTarget // Annotation denotes Target that will be used for tests public final Target target = new AmqpTarget(); // Out-of-the-box implementation of Target (for more information take a look at Test Target section) @BeforeClass //Method will be run once: before whole contract test suite public static void setUpService() { //Run DB, create schema //Run service //... } @Before //Method will be run before each test of interaction public void before() { // Message data preparation // ... } @PactVerifyProvider('an order confirmation message') String verifyMessageForOrder() { Order order = new Order() order.setId(10000004) order.setPrice(BigDecimal.TEN) order.setUnits(15) def message = new ConfirmationKafkaMessageBuilder() .withOrder(order) .build() JsonOutput.toJson(message) } } ``` ## Provider state callback methods For the provider states in the pact being verified, you can define methods to be invoked to setup the correct state for each interaction. Just annotate a method with the `au.com.dius.pact.provider.junit.State` annotation and the method will be invoked before the interaction is verified. For example: ```java @State("SomeProviderState") // Must match the state description in the pact file public void someProviderState() { // Do what you need to set the correct state } ``` If there are parameters in the pact file, just add a Map parameter to the method to be able to access those parameters. ```java @State("SomeProviderState") public void someProviderState(Map<String, Object> providerStateParameters) { // Do what you need to set the correct state } ``` ### Provider state teardown methods If you need to tear down your provider state, you can annotate a method with the `@State` annotation with the action set to `StateChangeAction.TEARDOWN` and it will be invoked after the interaction is verified. ```java @State("SomeProviderState", action = StateChangeAction.TEARDOWN) public void someProviderStateCleanup() { // Do what you need to to teardown the state } ``` #### Returning values that can be injected You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/au.com.dius:pact-jvm-provider-junit:jar:4.0.10' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For this to work, just make your provider state method return a Map of the values. ### Using multiple classes for the state change methods If you have a large number of state change methods, you can split things up by moving them to other classes. There are two ways you can do this: #### Use interfaces You can put the state change methods on interfaces and then have your test class implement those interfaces. See [StateAnnotationsOnInterfaceTest](src/test/java/au/com/dius/pact/provider/junit/StateAnnotationsOnInterfaceTest.java) for an example. #### Specify the additional classes on the test target You can provide the additional classes to the test target with the `withStateHandler` or `setStateHandlers` methods. See [BooksPactProviderTest](pact-jvm-provider-spring/src/test/java/au/com/dius/pact/provider/spring/BooksPactProviderTest.java) for an example. ## Pact source The Pact runner will automatically collect pacts based on annotations on the test class. For this purpose there are 3 out-of-the-box options (files from a directory, files from a set of URLs or a pact broker) or you can easily add your own Pact source. If you need to load a single pact file from the file system, use the `PactUrl` with the URL set to the file path. **Note:** You can only define one source of pacts per test class. ### Download pacts from a pact-broker To use pacts from a Pact Broker, annotate the test class with `@PactBroker(host="host.of.pact.broker.com", port = "80")`. You can also specify the protocol, which defaults to "http". The pact broker will be queried for all pacts with the same name as the provider annotation. For example, test all pacts for the "Activity Service" in the pact broker: ```java @RunWith(PactRunner.class) @Provider("Activity Service") @PactBroker(host = "localhost", port = "80") public class PactJUnitTest { @TestTarget public final Target target = new HttpTarget(5050); } ``` #### Using Java System properties The pact broker loader was updated to allow system properties to be used for the hostname, port or protocol. The port was changed to a string to allow expressions to be set. To use a system property or environment variable, you can place the property name in `${}` expression de-markers: ```java @PactBroker(host="${pactbroker.hostname}", port = "80") ``` You can provide a default value by separating the property name with a colon (`:`): ```java @PactBroker(host="${pactbroker.hostname:localhost}", port = "80") ``` #### More Java System properties The default values of the `@PactBroker` annotation now enable variable interpolation. The following keys may be managed through the environment * `pactbroker.host` * `pactbroker.port` * `pactbroker.scheme` * `pactbroker.tags` (comma separated) * `pactbroker.auth.username` (for basic auth) * `pactbroker.auth.password` (for basic auth) * `pactbroker.auth.token` (for bearer auth) * `pactbroker.consumers` (comma separated list to filter pacts by consumer; if not provided, will fetch all pacts for the provider) #### Using tags with the pact broker The pact broker allows different versions to be tagged. To load all the pacts: ```java @PactBroker(host="pactbroker", port = "80", tags = {"latest", "dev", "prod"}) ``` The default value for tags is `latest` which is not actually a tag but instead corresponds to the latest version ignoring the tags. If there are multiple consumers matching the name specified in the provider annotation then the latest pact for each of the consumers is loaded. For any other value the latest pact tagged with the specified tag is loaded. Specifying multiple tags is an OR operation. For example if you specify `tags = {"dev", "prod"}` then both the latest pact file tagged with `dev` and the latest pact file taggged with `prod` is loaded. #### Using authentication with the with the pact broker You can use basic authentication with the `@PactBroker` annotation by setting the `authentication` value to a `@PactBrokerAuth` annotation. For example: ```java @PactBroker(host = "${pactbroker.url:localhost}", port = "1234", tags = {"latest", "prod", "dev"}, authentication = @PactBrokerAuth(username = "test", password = "test")) ``` Bearer tokens are also supported. For example: ```java @PactBroker(host = "${pactbroker.url:localhost}", port = "1234", tags = {"latest", "prod", "dev"}, authentication = @PactBrokerAuth(token = "test")) ``` The `token`, `username` and `password` values also take Java system property expressions. Preemptive Authentication can be enabled by setting the `pact.pactbroker.httpclient.usePreemptiveAuthentication` Java system property to `true`. ### Allowing just the changed pact specified in a webhook to be verified [4.0.6+] When a consumer publishes a new version of a pact file, the Pact broker can fire off a webhook with the URL of the changed pact file. To allow only the changed pact file to be verified, you can override the URL by adding the annotation `@AllowOverridePactUrl` to your test class and then setting using the `pact.filter.consumers` and `pact.filter.pacturl` values as either Java system properties or environment variables. If you have annotated your test class with `@Consumer` you don't need to provide `pact.filter.consumers`. ### Pact Url To use pacts from urls annotate the test class with ```java @PactUrl(urls = {"http://build.server/zoo_app-animal_service.json"} ) ``` If you need to load a single pact file from the file system, you can use the `PactUrl` with the URL set to the file path. ### Pact folder To use pacts from a resource folder of the project annotate test class with ```java @PactFolder("subfolder/in/resource/directory") ``` ### Custom pacts source It's possible to use a custom Pact source. For this, implement interface `au.com.dius.pact.provider.junit.loader.PactLoader` and annotate the test class with `@PactSource(MyOwnPactLoader.class)`. **Note:** class `MyOwnPactLoader` must have a default empty constructor or a constructor with one argument of class `Class` which at runtime will be the test class so you can get custom annotations of test class. ### Filtering the interactions that are verified By default, the pact runner will verify all pacts for the given provider. You can filter the pacts and interactions by the following methods. #### Filtering by Consumer You can run only those pacts for a particular consumer by adding a `@Consumer` annotation to the test class. For example: ```java @RunWith(PactRunner.class) @Provider("Activity Service") @Consumer("Activity Consumer") @PactBroker(host = "localhost", port = "80") public class PactJUnitTest { @TestTarget public final Target target = new HttpTarget(5050); } ``` #### Interaction Filtering You can filter the interactions that are executed by adding a `@PactFilter` annotation to your test class. The pact filter annotation will then only verify interactions that have a matching value, by default provider state. You can provide multiple values to match with. The filter criteria is defined by the filter property. The filter must implement the `au.com.dius.pact.provider.junit.filter.InteractionFilter` interface. Also check the `InteractionFilter` interface for default filter implementations. For example: ```java @RunWith(PactRunner.class) @PactFilter("Activity 100 exists in the database") public class PactJUnitTest { } ``` You can also use regular expressions with the filter. For example: ```java @RunWith(PactRunner.class) @PactFilter(values = {"^\\/somepath.*"}, filter = InteractionFilter.ByRequestPath.class) public class PactJUnitTest { } ``` ### Setting the test to not fail when no pacts are found By default the pact runner will fail the verification test if no pact files are found to verify. To change the failure into a warning, add a `@IgnoreNoPactsToVerify` annotation to your test class. #### Ignoring IO errors loading pact files You can also set the test to ignore any IO and parser exceptions when loading the pact files by setting the `ignoreIoErrors` attribute on the annotation to `"true"` or setting the JVM system property `pact.verification.ignoreIoErrors` to `true`. ** WARNING! Do not enable this on your CI server, as this could result in your build passing with no providers having been verified due to a configuration error. ** ## Test target The field in test class of type `au.com.dius.pact.provider.junit.target.Target` annotated with `au.com.dius.pact.provider.junit.target.TestTarget` will be used for actual Interaction execution and asserting of contract. **Note:** there must be exactly 1 such field, otherwise an `InitializationException` will be thrown. ### HttpTarget `au.com.dius.pact.provider.junit.target.HttpTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target` that will play pacts as http request and assert response from service by matching rules from pact. You can also specify the protocol, defaults to "http". ### AmqpTarget `au.com.dius.pact.provider.junit.target.AmqpTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target` that will play pacts as an AMQP message and assert response from service by matching rules from pact. **Note for Maven users:** If you use Maven to run your tests, you will have to make sure that the Maven Surefire plugin is at least version 2.22.1 uses an isolated classpath. For example, configure it by adding the following to your POM: ```xml <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.22.1</version> <configuration> <useSystemClassLoader>false</useSystemClassLoader> </configuration> </plugin> ``` #### Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The HttpTarget supports request filters by annotating methods on the test class with `@TargetRequestFilter`. These methods must be public void methods that take a single HttpRequest parameter. For example: ```java @TargetRequestFilter public void exampleRequestFilter(HttpRequest request) { request.addHeader("Authorization", "OAUTH hdsagasjhgdjashgdah..."); } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! #### Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ### Custom Test Target It's possible to use custom `Target`, for that interface `Target` should be implemented and this class can be used instead of `HttpTarget`. # Verification Reports The default test behaviour is to display the verification being done to the console, and pass or fail the test via the normal JUnit mechanism. Additional reports can be generated from the tests. ## Enabling additional reports via annotations on the test classes A `@VerificationReports` annotation can be added to any pact test class which will control the verification output. The annotation takes a list report types and an optional report directory (defaults to "target/pact/reports"). The currently supported report types are `console`, `markdown` and `json`. For example: ```java @VerificationReports({"console", "markdown"}) public class MyPactTest { ``` will enable the markdown report in addition to the normal console output. And, ```java @VerificationReports(value = {"markdown"}, reportDir = "/myreports") public class MyPactTest { ``` will disable the normal console output and write the markdown reports to "/myreports". ## Enabling additional reports via Java system properties or environment variables The additional reports can also be enabled with Java System properties or environment variables. The following two properties have been introduced: `pact.verification.reports` and `pact.verification.reportDir`. `pact.verification.reports` is the comma separated list of report types to enable (e.g. `console,json,markdown`). `pact.verification.reportDir` is the directory to write reports to (defaults to "target/pact/reports"). ## Additional Reports The following report types are available in addition to console output (`console`, which is enabled by default): `markdown`, `json`. You can also provide a fully qualified classname as report so custom reports are also supported. This class must implement `au.com.dius.pact.provider.reporters.VerifierReporter` interface in order to be correct custom implementation of a report. # Publishing verification results to a Pact Broker For pacts that are loaded from a Pact Broker, the results of running the verification can be published back to the broker against the URL for the pact. You will be able to see the result on the Pact Broker home screen. You need to set the version of the provider that is verified using the `pact.provider.version` system property. To enable publishing of results, set the Java system property or environment variable `pact.verifier.publishResults` to `true`. ## Tagging the provider before verification results are published [4.0.1+] You can have a tag pushed against the provider version before the verification results are published. To do this you need set the `pact.provider.tag` JVM system property to the tag value.

Last Version: 4.0.10

Release Date:

Geb for JUnit 3

org.codehaus.geb : geb-junit3

Geb (pronounced "jeb") integration with the JUnit 3 test framework.

Last Version: 0.7.2

Release Date:

Last Version: 1.10.12

Release Date:

Reesmo Java Adapter JUnit

cz.etnetera : reesmo-adapter-junit

JUnit adapter for writing results into Reesmo.

Last Version: 0.1.3

Release Date:

fuzzy-junit-4

com.redfin : fuzzy-junit-4

A tool that generates randomized but deterministic values for use in test suites.

Last Version: 0.6.1

Release Date: