

JarCasting

 JarCasting

		

	
en
	
en_US
	
ru_RU
	
en_IN
	
de_DE

	
Contacts

	Top 100 Java Libraries

Categories

	
Languages
	Java 8

	JavaScript

	Java

	Groovy

	Kotlin

	Scala

	Clojure

	Python

	Ruby

	
Development Tools
	IDE

	Version Controls

	Fernflower

	Development Libraries

	Mobile Development

	Native

	
Jakarta EE
	The Web Tier

	Jakarta EE Supporting Technologies

	Jakarta EE Platform

	Jakarta Bean Validation

	Jakarta Contexts and Dependency Injection

	Jakarta Persistence

	Jakarta Security

	
Business Logic Libraries
	Machine Learning

	Game Development

	Minecraft

	libGDX

	jsoup

	LWJGL

	PDFBox

	Geospatial

	Documents Processing

	Reporting

	JDOM

	pathfinder

	Twitter4J

	Computer Vision

	Constraint Satisfaction Problem Solver

	Financial

	Science

	Search

	Web Crawling

	Discord API

	
Container
	Microservices

	Application Servers

	Virtualization Tools

	PaaS Providers

	
General Purpose Libraries
	JGraphT

	Bean Mapping

	Date and Time

	Functional Programming

	High Performance

	Other

	Utility

	
User Interface
	Web Frameworks

	Charts

	GUI

	JavaFX

	CLI

	
Program Interface
	REST Frameworks

	
Data
	Databases

	Caching

	Data Structures

	JSON

	ORM

	PDF

	Data Formats

	
Net
	HTTP Clients

	Networking

	
Security
	OAuth2

	Apache Shiro

	Bouncy Castle

	Cryptomator

	Hdiv

	jjwt

	Jwks RSA

	Kalium

	Keycloak

	Keywhiz

	Nbvcxz

	OACC

	OTP-Java

	pac4j

	Password4j

	SecurityBuilder

	SSLContext-Kickstart

	Themis

	Tink

	
Application Layer Libs
	Schedulers

	Bytecode Manipulation

	Cluster Management

	Code Generators

	Configuration

	Dependency Injection

	Distributed Applications

	Distributed Transactions

	Introspection

	Job Scheduling

	Logging

	Messaging

	
Unit Testing
	JUnit

	Mockito

	TestNG

	PowerMock

	
Build Tools
	Continuous Integration and Continuous Delivery

	Maven

	Gradle

	Ant

	Launch4j

	GNU Compiler for Java

	Compiler-compiler

	Distribution

	
Application Testing & Monitoring
	Application Performance Monitoring (APM)

	JMeter

	Cucumber

	Spock

	Arquillian

	Gatling

	Code Analysis

	Code Coverage

	Monitoring

	Performance analysis

	Java Libs
	Maven Plugins
	Archetypes

	
Java Libraries

	
de.rototor.pdfbox

	
pdfboxgraphics2d-parent

PDFBox-Graphics2d - Parent

Graphics2D Bridge for Apache PDFBox

	License	
License

Apache License, Version 2.0

	Categories	
Categories

PDFBox
Business Logic Libraries
PDF
Data

	GroupId	GroupId
de.rototor.pdfbox
	ArtifactId	ArtifactId
pdfboxgraphics2d-parent
	Last Version	Last Version
3.0.0-RC1
	Release Date	Release Date

Apr 2, 2021

	Type	Type
pom
	Description	
Description

PDFBox-Graphics2d - Parent

Graphics2D Bridge for Apache PDFBox

	Project URL	
Project URL

https://github.com/rototor/pdfbox-graphics2d

	Source Code Management	
Source Code Management

https://github.com/rototor/pdfbox-graphics2d

Download pdfboxgraphics2d-parent

	Filename	Size
	pdfboxgraphics2d-parent-3.0.0-RC1.pom	5 KB
	Browse

	

How to add to project

Apache Maven

<!-- https://jarcasting.com/artifacts/de.rototor.pdfbox/pdfboxgraphics2d-parent/ -->
<dependency>
 <groupId>de.rototor.pdfbox</groupId>
 <artifactId>pdfboxgraphics2d-parent</artifactId>
 <version>3.0.0-RC1</version>
 <type>pom</type>
</dependency>

Gradle Groovy

// https://jarcasting.com/artifacts/de.rototor.pdfbox/pdfboxgraphics2d-parent/
implementation 'de.rototor.pdfbox:pdfboxgraphics2d-parent:3.0.0-RC1'

Gradle Kotlin

// https://jarcasting.com/artifacts/de.rototor.pdfbox/pdfboxgraphics2d-parent/
implementation ("de.rototor.pdfbox:pdfboxgraphics2d-parent:3.0.0-RC1")

Apache Buildr

'de.rototor.pdfbox:pdfboxgraphics2d-parent:pom:3.0.0-RC1'

Apache Ivy

<dependency org="de.rototor.pdfbox" name="pdfboxgraphics2d-parent" rev="3.0.0-RC1">
 <artifact name="pdfboxgraphics2d-parent" type="pom" />
</dependency>

Groovy Grape

@Grapes(
@Grab(group='de.rototor.pdfbox', module='pdfboxgraphics2d-parent', version='3.0.0-RC1')
)

Scala SBT

libraryDependencies += "de.rototor.pdfbox" % "pdfboxgraphics2d-parent" % "3.0.0-RC1"

Leiningen

[de.rototor.pdfbox/pdfboxgraphics2d-parent "3.0.0-RC1"]

Dependencies

compile (1)

	Group / Artifact	Type	Version
	
org.apache.pdfbox
:

pdfbox
	jar	

3.0.0-RC1

test (5)

	Group / Artifact	Type	Version
	
junit
:

junit
	jar	

4.13.1

	
org.apache.xmlgraphics
:

batik-swing
	jar	

1.14

	
org.apache.xmlgraphics
:

xmlgraphics-commons
	jar	

2.4

	
com.twelvemonkeys.imageio
:

imageio-jpeg
	jar	

3.6.4

	
org.jfree
:

jfreechart
	jar	

1.0.19

Project Modules

	graphics2d

pdfbox-graphics2d

Graphics2D Bridge for Apache PDFBox

Intro

Using this library you can use any Graphics2D API based SVG / graph / chart library to embed those graphics as vector drawing in a PDF. In combination with PDFBox PDFRenderer/PageDrawer you can also "rerender" PDF pages and change certain aspects (e.g. change the color mapping and perform an overfill) .

The following features are supported:

	Drawing any shape using draw...() and fill...() methods from Graphics2D.
	Drawing images. The default is to always lossless compress them. You could plugin your own Image -> PDImageXObject conversion if you want to encode the images as jpeg.
	All BasicStroke attributes.
	Paint:
	Color. You can specify your own color mapping implementation to special map the (RGB) colors to PDColor. Beside using CMYK colors you can also use spot colors.
	GradientPaint, LinearGradientPaint and RadialGradientPaint. There are some restrictions:
	GradientPaint always generates acyclic gradients.

	TexturePaint.

	Drawing text. By default all text is drawn as vector shapes, so no fonts are embedded. RTL languages are supported. It's possible to use fonts, but this loses some features (especially RTL support) and you must provide the TTF files of the fonts if the default PDF fonts are not enough.

The following features are not supported (yet):

	(Alpha-)Composite with a rule different then AlphaComposite.SRC_OVER.
	copyArea(). This is not possible to implement.
	hit(). Why would you want to use that?
	setXORMode(). Their is no blend mode in PDF which would allow to emulate this, so this is not possible to be implemeted.

Download

This library is available through Maven:

<dependency>
	<groupId>de.rototor.pdfbox</groupId>
	<artifactId>graphics2d</artifactId>
	<version>0.31</version>
</dependency>

This library targets Java 1.6 and should work with Java 1.6. But at the moment it is only tested with Java 8 and Java 11.

Example Usage

public class PDFGraphics2DSample {
	public static main(String[] argv) {
		PDDocument document = new PDDocument();
		PDPage page = new PDPage(PDRectangle.A4);
		document.addPage(page);

		/*
		 * Creates the Graphics and sets a size in pixel. This size is used for the BBox of the XForm.
		 * So everything drawn outside (0x0)-(width,height) will be clipped.
		 */
		PdfBoxGraphics2D pdfBoxGraphics2D = new PdfBoxGraphics2D(document, 400, 400);

		/*
		 * Now do your drawing. By default all texts are rendered as vector shapes
		 */

		/* ... */

		/*
		 * Dispose when finished
		 */
		pdfBoxGraphics2D.dispose();

		/*
		 * After dispose() of the graphics object we can get the XForm.
		 */
		PDFormXObject xform = pdfBoxGraphics2D.getXFormObject();

		/*
		 * Build a matrix to place the form
		 */
		Matrix matrix = new Matrix();
		/*
		 * Note: As PDF coordinates start at the bottom left corner, we move up from there.
		 */
		matrix.translate(0, 20);
		PDPageContentStream contentStream = new PDPageContentStream(document, page);
		contentStream.transform(matrix);

		/*
		 * Now finally draw the form. As we not do any scaling, the form drawn has a size of 5,5 x 5,5 inches,
		 * because PDF uses 72 DPI for its lengths by default. If you want to scale, skew or rotate the form you can
		 * of course do this. And you can also draw the form more then once. Think of the XForm as a stamper.
		 */
		contentStream.drawForm(xform);

		contentStream.close();

		document.save(new File("mysample.pdf"));
		document.close();
	}
}

See also manual drawing and drawing SVGs. The testdrivers are only smoke tests, i.e. they don't explicit test the result, they just run and test if the their are crashes. You have to manually compare the PDF result of the testdriver with the also generated PNG compare image.

Rendering text using fonts vs vectors

When rendering a text in a PDF file you can choose two methods:

	Render the text using a font as text.
	Render the text using TextLayout as vector graphics.

Rendering a text using a font is the normal and preferred way to display a text:

	The text can be copied and is searchable.
	Usually it takes less space then when using vector shapes.
	When printing in PrePress (Digital / Offset Print) the RIP usually handles text special to ensure the best possible reading experience. E.g. RGB Black is usually mapped to a black with some cyan. This gives a "deeper" black, especially if you have a large black area. But if you use a RGB black to render text it is usually mapped to pure black to avoid any printing registration mismatches, which would be very bad for reading the text.
	Note: When rendering a text using a font you should always embed the needed subset of the font into the PDF. Otherwise not every (=most) PDF viewers will be able to display the text correctly, if they don't have the font or have a different version of the font, which can happen across different OS and OS versions.
	Note: Not all PDF viewer can handle all fonts correctly. E.g. PDFBox 1.8 was not able to handle fonts right. But nowadays all PDF viewers should be able to handle fonts fine.
	Note: TextAttribute.LIGATURES is currently not supported.
	Note: TextAttribute.BACKGROUND is currently not supported.
	Note: There is no Bidi support at the moment. See the problems PDFBox has with rendering RTL languages at the moment.

On the other site rendering a text using vector shapes has the following properties:

	The text is always displayed the same. They will be no differences between the PDF viewers.
	The text is not searchable and can not be copied.
	Note: Vector shapes take more space than a embedded font.
	Note: You may want to manually alter the color mapping to e.g. ensure a black text is printed using pure CMYK black. If you do not plan to print the PDF in offset or digital print you can ignore that. This will make no difference for your normal desktop printer.
	Note: When using Apache Batik to draw SVGs the text will always be drawn as vector shape. Batik always converts texts to vector shapes first and then applies the transforms on it (if there are any). So PdfBoxGraphics2D never even gets a chance to draw the text using a PDF font. In theory, this could be solved by installing an appropriate text painter on the Batik bridge context. But no one has created such a text painter yet.

If you want to get a 1:1 mapping of your Graphics2D drawing in the PDF you should use the vector mode. If you want to have the text searchable and only use LTR languanges (i.e. latin-based) you may try the text mode. For this mode to work you need the font files (.ttf / .ttc) of the fonts you want to use and must register it with this library. Using the normal Java font API it is not possible to access the underlying font file. So a manual mapping of Font to PDFont is needed.

Example how to use the font mapping

The font mapping is done using the PdfBoxGraphics2DFontTextDrawer class. There you register the fonts you have. By default the mapping tries to only use fonts when all features used by the drawn text are supported. If your text uses a features which is not supported (e.g. RTL text) then it falls back to using vectorized text.

If you always want to force the use of fonts you can use the class PdfBoxGraphics2DFontTextForcedDrawer. But this is unsafe and not recommend, because if some text can not be rendered using the given fonts it will not be drawn at all (e.g. if a font misses a needed glyph).

If you want to use the default PDF fonts as much as possible to have no embedded fonts you can use the class PdfBoxGraphics2DFontTextDrawerDefaultFonts. This class will always use a default PDF font, but you can also register additional fonts.

public class PDFGraphics2DSample {
	public static main(String[] argv) {
		/*
		 * Document creation and init as in the example above
		 */

		// ...

		/*
		 * Register your fonts
		 */
		PdfBoxGraphics2DFontTextDrawer fontTextDrawer = new PdfBoxGraphics2DFontTextDrawer();
		try {
			/*
			 * Register the font using a file
			 */
			fontTextDrawer.registerFont(new File("..path..to../DejaVuSerifCondensed.ttf"));

			/*
			 * Or register the font using a stream
			 */
			fontTextDrawer.registerFont(
					PDFGraphics2DSample.class.getResourceAsStream("DejaVuSerifCondensed.ttf"));

			/*
			 * You already have a PDFont in the document? Then make it known to the library.
			 */
			fontTextDrawer.registerFont("My Custom Font", pdMyCustomFont);

			/*
			 * Create the graphics
			 */
			PdfBoxGraphics2D pdfBoxGraphics2D = new PdfBoxGraphics2D(document, 400, 400);

			/*
			 * Set the fontTextDrawer on the Graphics2D. Note:
			 * You can and should reuse the PdfBoxGraphics2DFontTextDrawer
			 * within the same PDDocument if you use multiple PdfBoxGraphics2D.
			 */
			pdfBoxGraphics2D.setFontTextDrawer(fontTextDrawer);

			/* Do you're drawing */

			/*
			 * Dispose when finished
			 */
			pdfBoxGraphics2D.dispose();

			/*
			 * Use the result as above
			 */
			// ...
		} finally {
			/*
			 * If you register a font using a stream then a tempfile
			 * will be created in the background.
			 * Close the PdfBoxGraphics2DFontTextDrawer to free any
			 * tempfiles created for the fonts.
			 */
			fontTextDrawer.close();
		}

	}
}

You can also complete customize the font mapping if you derive from PdfBoxGraphics2DFontTextDrawer:

class MyPdfBoxGraphics2DFontTextDrawer extends PdfBoxGraphics2DFontTextDrawer {
	@Override
	protected PDFont mapFont(Font font, IFontTextDrawerEnv env)
			throws IOException, FontFormatException {
		// Using the font, especially the font.getFontName() or font.getFamily() to determine which
		// font to use... return null if the font can not be mapped. You can also call registerFont() here.

		// Default lookup in the registered fonts
		return super.mapFont(font, env);
	}
}

This allows you to load the fonts on demand.

Compression

By default the content stream data is compressed using the zlib default level 6. If you want to get the maximum compression out of PDFBox you should set a system property before generating your PDF:

 System.setProperty(Filter.SYSPROP_DEFLATELEVEL,"9");

Creating PDF reports

If you want to create complex PDF reports with text and graphs mixed it is recommend to not use PDFBox and this library directly, as both are very low level. Instead you should use OpenHtmlToPdf. OpenHtmlToPdf allows you to build your reports using HTML (which you can generate with any template engine you like, e.g. Apache FreeMarker) and place custom graphs (which are draw using Graphics2D using this library) with <object> HTML tags.

Changes

Version 0.31:

	Support for colors with overprint.
	New PdfBoxGraphics2DColor class to allow using any kind of color. E.g. PDSeperation based colors.

Version 0.30:

	Clip invalid miter limit values #29. Thanks to @kiwiwings for reporting this.
	Added a new module for extended-tests. This module will contain tests with 3rdparty library which by themself depend on pdfbox-graphics2d. It also now contains a new class DebugCodeGeneratingGraphics2d (by @kiwiwings) which helps creating isolated testcases.
	Upgrade to PDFBox 2.0.22

Version 0.29:

	Fix a bug where the AlphaComposite alpha value would be mixed with a color alpha value when drawing images. When setting a transparent color this had resulted in a invisible image. Thanks to @kiwiwings for reporting this.
	Initial support for TextAttribute.UNDERLINE and Textattribute.STRIKETHROUGH when using a font to render a text.

Version 0.28:

	Fix handling of AttributedString (off-by-one error). Thanks for @kiwiwings for pointing out the error and providing a fix #27.
	Upgrade to PDFBox 2.0.21
	Respect that default fonts may not allow to be embedded. (PDFBox 2.0.21 now respects the flags within a TTF font, so we also must do this)
	When painting an image with an AlphaComposite the alpha is now respected correctly.

Version 0.27:

	Internal API breakage to implement getFontMetrics().stringWidth() correctly in the case a PDFont is used to draw the text #16. Thanks to @megri for reporting this problem.
	Reverted back to PDFBox 2.0.19 because of rendering issues PDFBOX-4886.

Version 0.26:

	Added a CMYK color mapper, which converts the paint colors to CMYK using an ICC Profile. Thanks to @larrylynn-wf for providing this feature #22.
	Upgrade to PDFBox 2.0.20
	Initial support for Apache PDFBox TilingPaint. Thanks to @p1xel. Currently this is not clean and also not correct in many cases.

Version 0.25:

	Upgrade to PDFBox 2.0.17
	Correctly handle GradientPaint fractions.
	Correctly handle SVG LinearGradientPaint's in ObjectBoundingBox mode #19. Thanks to @larrylynn-wf for the report and the idea how to fix it.
	Internal API breakage to support non quadratic SVG gradients correctly #19.

Version 0.24:

	Upgrade to PDFBox 2.0.16

Version 0.23:

	Correctly handle even odd winding rules when clipping and filling shapes.

Version 0.22:

	Upgrade the PDFBox version to 2.0.15

Version 0.21:

	Provide the current XORMode color in the IPaintEnv. And document that XORMode is not working as it's not possible to emulate. Thanks @gredler for pointing this out #14. But you can do whatever you want with that information in your IPdfBoxGraphics2DPaintAplier subclass.
	Upgrade the PDFBox version to 2.0.14
	Handle PDFBox ShadingPaint's.

Version 0.20:

	Handle null transforms in drawImage() correctly. I.e. dont throw a NullPointerException, just ignore the not existing transform.
	Cache the different environments for the mapper/drawer/applier. This is a minor memory saving.

Version 0.19:

	You can now influence the shape fill/draw operations by setting a custom IPdfBoxGraphics2DDrawControl. This allows to do different things like e.g. draw an overfill for shapes (i.e. make shapes have a additional border). This can be useful if you need to preprocess a PDF for pre-press.

Version 0.18:

	setPaint(null) will cause the following fillXXX() and drawXXX() operations to be ignored. This allows in combination with PDFRenderer/PageDrawer to extract parts of a PDF page. E.g. you can draw only certain seperation colors into the resulting PDF if you filter the paints in PageDrawer.getPaint() and extract a seperation color from a PDF in that way.
	New class PdfBoxGraphics2DCMYKColor() which derives from java.awt.Color to be able to specify a CMYK color when painting.
	The default PdfBoxGraphics2DColorMapper now also supports mapping of "legacy" old iText 2 CMYKColor's.

Version 0.17:

	Upgrade the PDFBox version to 2.0.12

Versoin 0.16:

	Added new method disposeDanglingChildGraphics() to cleanup all dangling child graphics. This allows to use this graphics adapter with old legacy code which does not correctly call dispose() on the graphics it used.

Version 0.15:

	Upgrade the PDFBox version to 2.0.11

Version 0.14:

	Don't write invalid path commands into the stream, as this will break rendering in Acrobat Reader. Thanks @FabioVassallo #12

Version 0.13:

	Ugraded the PDFBox version to 2.0.9

Version 0.12:

	Don't share resources between XForm's, as Acrobat Reader does not like that.

Version 0.11:

	Support Batik SVG PatternPaint. Thanks @vipcxj for pointing this out and providing a testfile .
	Compress embedded image ICC Profile Data

Version 0.10:

	Don't export the same extended graphics state over and over again. Same for shadings. #8

Version 0.9:

	Compress the content stream generated for the XForm.
	When drawing the same image multiple times, it is only encoded once now.

Version 0.8:

	Implemented PdfBoxGraphics2DFontTextDrawerDefaultFonts to allow preferring default PDF fonts over vectorized text #5.

Version 0.7:

	Bugfixes on the font based text support. Now also gradients can be used to paint text.

Version 0.6:

	Implemented basic support for using fonts to render texts.

Version 0.5:

	Fixed getClip() and clip(Shape) handling. Both did not correctly handle transforms. This bug was exposed by Batik 1.9 and found by @ketanmpandya. Thanks @ketanmpandya #2, OpenHtmlToPdf #99

Version 0.4:

	Initial support for basic AlphaComposite. Thanks @FabioVassallo #1
	When drawing a shape with a zero or negative size don't use PDShadings, as they won't work.Thanks @FabioVassallo #1

Version 0.3:

	Fix for a NPE when calling setClip() with null.
	Upgrade to PDFBox 2.0.5, replacing the usage of appendRawCommands() with setMiterLimit().

Version 0.2:

	The paint applier (Mapping of java.awt.Paint to PDF) can be customized, so you can map special paints if needed.
	Support for TexturePaint

Licence

Licenced using the Apache Licence 2.0.

Versions

	Version
	

3.0.0-RC1

Apr 2, 2021

	

3.0.0-alpha3

May 6, 2022

	

3.0.0-alpha2

Sep 27, 2021

	

0.38

Apr 22, 2022

	

0.37

Apr 12, 2022

	

0.36

Mar 31, 2022

	

0.35

Feb 26, 2022

	

0.34

Dec 19, 2021

	

0.33

Sep 28, 2021

	

0.32

Jun 15, 2021

	

0.31

Feb 11, 2021

	

0.30

Dec 20, 2020

JarCasting
Disclaimer

Privacy Policy

Terms and Conditions of Use

Contacts

Top 100 Java Libraries

Hosted by:

	HostingRaja®
	Hetzner®
	VDSina.ru
	FirstByte

GeoDNS Provider:

	G-Core Labs

Project «JarCasting»

All product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement.

Build № 203.250.58.195

